
CoMo: An Open Infrastructure for

Network Monitoring – Research Agenda

Gianluca Iannaccone
Intel Research Cambridge

February 17, 2005

1 Introduction

The CoMo project will build an open infrastructure for network monitoring. The
infrastructure will span multiple administrative domains and allow its users to
gather data following per-system data sharing policies. Users will be able to
query the CoMo systems to perform any processing on the network traffic.

Given the open nature of the infrastructure the main challenge is then

“how to efficiently handle multiple, competing, traffic queries?”

Our idea is to define a per-query accuracy metric and maximize the aggregate
accuracy of all query results given the available resources. We argue that in
network monitoring it is always possible to regulate the accuracy of a query
(that will include the measurement error as well as the timeliness of the results).
For a given set of queries we then need to define an aggregate utility function
and be able to exercise a fine-grained control over it.

To overcome this challenge we need to address two orthogonal sub-challenges.
The first has to do with allowing users to post any query to the systems in a
secure fashion. The second is about the definition and regulation of queries’
accuracy in a distributed monitoring infrastructure. We now describe the two
sub-challenges in detail and introduce our ideas to overcome them.

#1 “how to allow users to easily define and compute any query on the network
traffic while providing security guarantees to the network operators sharing the
data?”

This challenge can be addressed at two levels. First, at the architectural level
where we define the boundaries and the capabilities of the system. Then, with a
feature-rich query language that allows an efficient specification and implemen-
tation of any traffic metric and at the same time makes possible to statically
verify the “safety” of the implementation. As a side note, it is not an aim
of CoMo to perform distributed query processing, instead we anticipate that
other applications will gather data from multiple CoMo systems and fuse them

1



to perform the processing (e.g., IrisNet [18]) We will discuss the CoMo system
architecture in Section 2. The security guarantees will be discussed in Section 3.

#2 “how to deliver sufficiently timely and accurate answers to a query when
there may be insufficient processing resources to give complete results?”

The CoMo systems will make policy decisions to turn down incoming queries or
reduce the accuracy of running queries in order to satisfy the requests of “most”
queries. The design space for addressing this challenge can be defined in two
dimensions: in space, i.e., if the policy is a global decision applied to all systems
or a local decision that each system may take independently; in time, i.e., if the
policy is applied online at query run-time, or off-line during the query planning
phase. Sections 4, 5 and 6 present three solutions within this design space.

2 Architecture
Joint work with C.
Diot, D. McAuley
(IRC), A. Moore,
I. Pratt (U. Cam-
bridge) and L. Rizzo
(U. Pisa). Please
refer to [24] for de-
tails.

In the design of the CoMo architecture we pursue three objectives: (i) pro-
vide data protection for the network operator; (ii) support any traffic query;
(iii) handle a wide range of operating environments (different transport media,
different input data rates, different query loads).

In [24] we present the details of the CoMo architecture that aims to satisfy
the above objectives. Here we highlight the main ideas.

Data protection. A major obstacle to the deployment of a monitoring in-
frastructure across multiple administrative domains is the anxiety of network
operators when facing a request to share network information with other parties.

The solution that is often used is to share an anonymized version of the
data and allow users to own the anonymized data. This approach is known to
have severe limitations [34]. First, it does not really address the concern of the
network operators that is never convinced of having anonymized “enough”. As
a result, today, no commercial ISP or corporation is sharing any anonymized
packet traces. Moreover, the user is also not satisfied because the anonymiza-
tion process discards too much information rendering the data useless for many
applications.

The approach we pursue in CoMo is instead to move the queries to the data.
The operator maintains the ownership of the data while users send queries where
the data reside. A network operator may then inspect the query beforehand and
decide whether that query should be allowed to run on the dataset. We envision
network operators to define the policy for the kind of queries depending on the
user’s role. For example, users belonging to the same organization may be
allowed to post any queries while external users may be restricted to a short list
of allowed queries.

Support any traffic query. The CoMo infrastructure must allow users to
compute any metric on the traffic. The first question is: “how can a user express
the metric to compute?”.

2



The need for expressing any traffic metric forces us to discard commonly
used query language (e.g., SQL) because too restrictive (how to express a query
to perform automated worm signature detection [29] or to track TCP sender
state [25]?). Furthermore, we need to pick a language that is of common use
among network researchers and application developers.

To address this challenge, we choose a classical modular approach that has
proven to be successful in similar contexts [36, 6]. Users write a single (simple)
plug-in module in C, making use of a feature-rich API provided by the core
system of CoMo. Then, they can send the module source code directly to the
system(s) to “load” the query and run it on the traffic.

The next question is then: “how does the system find the data of interest
for the metric?”. Supporting any queries means supporting queries that need
to process packets as they arrive to the interface but also packets that have
been transmitted in the past. There is a growing interest in network forensic
applications, i.e., applications that can look back in the traffic to understand
and trace back the root cause and behaviors of specific network events [23, 35].
For this reason, we envision the CoMo system to constantly maintain a large
packet trace always available to queries. The length of the packet trace would
obviously depend on disk space and traffic rate but we aim to dimension the
system to maintain 72 hours of traffic at least (i.e., one entire week-end).

Finally, the third question is “what should our target query response time
be?”. Unfortunately, different queries have a wide range of response time re-
quirements. In the context of capacity planning, the matter is the accuracy of
the answer rather than the response time [38]. For traffic engineering, common
tools and techniques work in a time-frame of tens of minutes given that that is
the timescale at which BGP operates [40]. Anomaly or worm detection appli-
cations may request (near) real-time responses [35, 41, 29]. Clearly, real-time
queries cannot be answered fetching packets from disk. For this reason, our ar-
chitecture provides two data feeds for queries. Real-time queries run directly on
incoming packets while queries with less stringent response time requirements
may run at a later time fetching packets from disk.

Handle different operating environments. The architecture guarantees
the scalability of the system by carefully partitioning the tasks among the dif-
ferent system components. Queries reside in plug-in modules. A set of core
processes makes sure that modules can process the packets, maintain state in-
formation about the packets, store data to disk and send the query response
back to the user. Core processes are partitioned according to the requirements
of the functionalities they provide, e.g., functions with real-time requirements
are run in different processes from where functions with less stringent require-
ments are executed. Moreover, each hardware device is assigned to a different
process. This partitioning allows to efficiently and easily scale the system up to
higher speeds and larger query loads.

3



3 Safe Modules

Before discussing the security of the system we have to define the CoMo threat
model. We assume the following: (i) we trust the hardware, the operating
system and the core processes1; (ii) an adversary can assume the credentials of
any valid user in the system, write any plug-in module and load the module in
any CoMo system.

The security guarantees we aim to provide are the following:

• A malicious module cannot starve any other modules of resources. This
problem can be reduced to a classical resource management problem and
solved by guaranteeing fair access to system resources of all modules. In
fact, because modules process incoming traffic, on which we have little if
any control, even a perfectly legal module could be driven to monopolize
all processing resources in response to certain input patterns.

• A malicious module cannot corrupt input data of other modules. This
is achieved by isolating modules and removing any dependency between
them. In CoMo, the input data of a module are provided by the core
processes, never by plug-in modules loaded by other users. This design
choice negatively impacts the performance of the overall system because
modules cannot be pipelined to perform complex functions (i.e., the same
computation may have to be performed by multiple modules). However,
it has several advantages: (i) the input data of all modules is pre-defined;
(ii) the input data of a module cannot be corrupted by other users; (iii)
it allows to treat each module independently, to measure its resource us-
age in isolation and thus implement resource management decisions more
efficiently.

• A malicious module cannot gain access to the state of other modules or
to packet fields that system policies do not allow to read. This results
in controlling memory accesses of all modules. One approach could be
to provide memory isolation via virtualization (e.g., running modules as
separate processes). This approach has the drawback of delegating the
control over module resource usage to the OS or, if modification to the
OS are needed to gain more control, would reduce the portability of the
CoMo software requiring to run part of the core system in kernel space.
Instead, we prefer to investigate the use of safe languages where mem-
ory access are guaranteed to happen only within defined regions of mem-
ory. CoMo modules are defined as a set of callback functions that oper-
ate in three memory regions: packet data (read only), packet meta-data
(read/write but private to the module) and a third memory region shared
among all instances of the same module.
We aim to define a C-like language for modules adapting existing solutions
proposed in the literature [27, 14].

1Although expanding the threat model to include these system components would raise
several interesting research questions we consider them as out of scope for this project.

4



4 Resource management via packet sampling
Joint work with C.
Barakat (INRIA)
and C. Diot (IRC).
For more details
please refer to [2].

Traffic sampling refers to the action of collecting a subset of the traffic on a
network link. At a high level, sampling is concerned with making partial obser-
vations on the traffic, from which conclusions can be drawn on properties that
apply to all packets. The observation problem is concerned with minimising
information loss whilst reducing the volume of collected data as much as possi-
ble. It is this reduction which makes the collection process scalable. The way
in which the partial information is transformed into knowledge of the packet
stream as a whole is the inversion problem. The inversion process is in general
imperfect and introduces errors.

Sampling is therefore an efficient way to reduce the load on a traffic monitor.
It allows to perform data reduction close to the wire with little impact on the
processing resources of the monitoring system.

In the context of the CoMo project, sampling may allow a graceful degra-
dation of the performance of a running module. Sampling the incoming traffic
of a running module is therefore a local, on-line policy decision that a CoMo
system may take to reduce overall processing resource usage, while keeping the
results of the module within the user-requested error bounds.

Several works in the literature have studied the inversion problem from sam-
pled traffic. Duffield et al. [12] study the problem of flow splitting and propose
estimators for the total number of flows and for the average flow size in the orig-
inal traffic stream. [13, 21] study the inversion of the flow size distribution with
two different methods. They both show that the major difficulty comes from the
number of flows that are not sampled at all and that need to be estimated with
an auxiliary method. [8] finds the sampling rate that assures a bounded error
on the estimation of the size of flows contributing to more than some predefined
percentage of the traffic volume. [11] introduces the idea of smart sampling
where the purpose is to isolate flows that contribute considerably to the traffic;
this is done by selecting flow records with a probability that increases with the
flow size.

All prior work focused on the inversion of aggregate flow properties. How-
ever, it is not clear how packet sampling affects the accuracy of traffic measure-
ment that focus on individual flow properties. As a first step in this direction,
we model and analyze how to detect and rank the largest flows from the sampled
traffic.

We choose to start from this metric because the knowledge of the top users
or applications is one of the most useful statistics to be extracted from net-
work traffic. This information is used for marketing purposes by application
developers or content providers. Network operators use the knowledge on the
most popular destinations to identify emerging markets and applications or to
locate where to setup new Points of Presence. Content delivery networks use
the popularity to define their caching or replication strategies. In traffic engi-
neering, the identification of heavy hitters in the network can be used to treat
and route them differently across the network [40, 37, 16]. Keeping track of
the network prefixes that generate most traffic is also of great importance for

5



anomaly detection mechanisms and systems. A variation in the pattern of the
most common applications may be used as a warning sign and trigger careful
inspection of the packet streams.

Given all these potential applications, it does not come as a surprise that
there has been a significant effort in the research community to find ways to track
frequent items in a data stream [9, 10, 19, 7]. This problem has usually been
addressed with the objective of reducing storage space usage. All the works in
the literature assume that if the algorithm and the memory size are well chosen,
the largest flows can be detected and ranked with a high precision. However, in
the presence of packet sampling, even if the methods rank correctly the set of
sampled flows, there is no guarantee that the sampled rank corresponds to the
original rank.

We define the problem as follows. Consider a monitor that, for a given mea-
surement period, samples packets independently of each other with probability
p (random sampling) and classifies them into flows (“sampled flows”). At the
end of the measurement period, the monitor sorts all sampled flows, based on
their sampled size in packets, and returns an ordered list of the t largest flows.
Because of the random nature of sampling, this sampled list may not match
the list that could have been obtained without sampling. We try to answer the
two following questions: (i) do the top t flows in the original unsampled traffic
appear in the list (detection)? (ii) do they appear in the list in the correct order
(total ranking)?

To answer the two questions, we perform an analytical study of the prob-
lem of ranking the sampled flows and compute the probability that they are
misranked. Surprisingly, our analytical analysis indicates that a high sampling
rate is required to obtain a good ranking. For example, considering a link with
thousands of flows with a Pareto flow size distribution, the sampling rate must
be above 10% to correctly rank the largest flows. We find that a sampling rate
of 1% – as reccomended my most router vendors to avoid overloading the routers
– allows only the successful ranking of the largest few flows, unless the number
of flows on the monitored link is in the order of millions. We find that a coarser
flow definition (e.g., packets destined to the same IP routable prefixes) improves
the ranking accuracy only if the relative sizes of the largest flows increase as a
function of the square root of their sizes. Therefore, contrary to common belief,
having larger flow sizes does not always help in accurately detecting and ranking
the largest flows.

Future research directions include devising additional methods to refine the
ranking in presence of errors. We identify two possible directions: protocol-
aware ranking and distributed sampling.

Protocol-aware ranking makes use of specific information carried in some of
the packets (e.g., TCP sequence numbers) to refine the ranking of the largest
flows. Preliminary investigations show that this approach is very promising.
The main limitation is that it can only be applied to a subset of flows and
flow definitions (e.g., TCP connections) and, depending on information set by
end-hosts, may incur in errors in the presence of malicious hosts.

Distributed sampling tries instead to correlate sampled information from

6



multiple sites in the case they observe the same flow. This way we artificially
increase the sampling rate for some flows and thus can report a more accurate
estimate of their size. On the other hand, this approach introduces a bias in
the ranking process since the sampling error strongly depends on the number
of times the same flow is sampled.

5 Placement of CoMo systems and modules
Joint Work with C.
Barakat (INRIA),
G. Cantieni, P.
Thiran (EPFL), C.
Diot (IRC). Please
refer to [5] for more
details.

The CoMo infrastructure incurs in three types of costs: (i) the one-time deploy-
ment cost that refers to the actual cost of the hardware equipment (e.g., network
capture device, splitter, disks, etc.); (ii) an operating recurring cost for running
and maintaining the systems; (iii) a service cost that is the cost of running one
specific query on the systems given the limited processing resources.

In order to minimize the deployment costs, network operators need to iden-
tify a set of limited strategic locations in their networks. The strategic im-
portance of a location may depend on properties of the network (e.g., links
connecting sites with a large number of users), of the links (e.g., transatlantic
links, peering links), of the locations (e.g., available rack space), or it may be
motivated by the demands and preferences of the users of the infrastructure.

Identifying the strategic locations is a hard problem and the placement of the
monitoring devices is closely related to the measurement objective. For example,
in [26], the authors focus on the placement of measurement devices for active
monitoring (more specifically for the construction of distance maps). Bejerano
et al. [3] address the placement problem for an active monitoring infrastructure
to measure delays and detects faults. In [42], the authors address the network
coverage problem, i.e., define a set of location that allow to observe most network
traffic. They show that the problem of finding the optimal placement is NP-hard
and present a set of greedy heuristics that provide near-optimal solutions.

In the context of CoMo, placing system addresses only half of the problem.
It remains to be defined on how many and what systems a given query should
run to maximize the accuracy while keeping the service cost to a minimum. We
seek a method that given a query would allow to specify in a global, off-line
fashion the target systems where the query should run and the sampling rate
for the incoming traffic.

We define the problem as follows: given a network topology, a set of origin-
destination pairs2, and a monitoring “budget”, which links should we monitor,
and at what sampling rate to maximize the accuracy metric while keeping the
monitoring cost below the total budget?

Note that we do not explicitly define the accuracy metric given that we
aim to apply this same method to different queries. In this framework, we
can define an optimization problem with non-linear constraints and derive an
optimal solution as long as the accuracy metric is a strictly concave function of

2A pair may refer to nodes in the network, links, network prefixes or communicating end-
points.

7



the sampling rate. We are currently investigating how to derive the behavior of
the accuracy metric for some canonical network traffic queries.

Future work will also address a set of additional concerns from an operation
standpoint related to the placement problem:

Resiliency to traffic changes. Traffic demand variations are expected in large
networks given the constant evolution of the network topology with the addition
of new nodes and users and the introduction of different traffic engineering
practices.

Resiliency to network failures. The placement should exhibit little sensi-
tivity to routing matrix changes. It has been shown that link failures are part
of everyday operations but the vast majority of the failures are isolated, short-
lived and the network returns to its pre-failure state in a matter of minutes [33].
These network failures cause the routing matrix to be very dynamic.

Competing traffic engineering objectives. Standard traffic engineering
practices may also compete with the measurement goal and hamper the ability
of the operator to optimize the monitoring infrastructure. For example, the
practice of traffic load balancing across equal cost paths makes the placement
problem more difficult to solve. Indeed, the knowledge of the traffic matrix and
the routing matrix does not help in determining the actual path packets will
take across the network. This is due to the randomness introduced at each hop
by the load balancing strategy.

6 Distributed indices
Joint work with F.
Bian, R. Govindan,
X. Li, H. Zhang
(USC), C. Diot
(IRC) and W. Hong
(IRB). For more
details please refer
to [31].

A CoMo system allows detailed analysis of past network data (“network forensic
analysis”). Given the large amount of data stored in the system, it is desirable
to be able to reduce the amount of data a query needs to process to produce
the results. A natural approach is to build indices for the stored data.

Moving from a single system to a network of systems, the next step is the
design of distributed indexing systems. The CoMo system can generate traffic
summaries (in the form of flow records, for example) and allow users to efficiently
query this set of traffic summaries in order to find which monitors contain
relevant traces that can be further analyzed, allowing users to drill down to
important data locations.

Prior work [22, 43] has discussed the design of distributed approaches to
evaluating certain kinds of declarative queries over traffic aggregates. One
kind of query that, surprisingly, has not received much attention is the multi-
dimensional range query. A flow record is naturally [30, 15] represented by a
hyper-rectangle in a multi-dimensional attribute space. The dimensions in this
space include the source and destination IP addresses, the source and desti-
nation port numbers, and possibly time. Many queries on network traffic are
therefore naturally expressed as multi-dimensional range queries (e.g., was there
a flow of size greater than 1MB to customer prefix P in time interval T ). Thus,
we argue, a distributed system that supports multi-dimensional range queries

8



should be an essential component of CoMo.
The design of distributed systems for supporting range queries has started

to receive some attention in the literature [32, 4, 39, 1]. Many of these systems
store multi-dimensional data in a manner that preserves locality – data tuples
are routed to nodes such that tuples stored at a node are “nearby” in attribute
space. This locality-preserving hashing enables efficient querying, since queries
can also be routed (using the same mechanisms as insertions) to nodes that
contain the relevant parts of the attribute space. Existing techniques based on
locality-preserving hashing cannot be directly applied to network monitoring:
some are designed for constrained environments [32], others do not support
multi-dimensional range queries [1, 20], and yet others replicate data records to
an extent that may be incompatible with the volume of flow records [4].

We consider the motivation for, and sketch the design of, MIND (Multi-
dimensional Indices for Network Diagnosis), a system that supports the creation
of distributed multi-dimensional indices. MIND consists of a collection of net-
work nodes that forms a hypercube overlay; these nodes are logically distinct
from, but could be co-located with, the CoMo systems. Traffic summaries ex-
pressed as multi-attribute tuples can be inserted into one or more indices. MIND
routes these tuples to nodes such that tuples near each other in the attribute
space are likely to be stored at the same node, making multi-dimensional range
searches efficient.

Care must be taken in using a distributed index for network monitoring.
Clearly, it is not feasible to insert all flow records from each network monitor
into MIND; such an approach could incur significant traffic overhead. Rather,
we see MIND as being used in much the same way database administrators build
centralized indices. A network administrator performs careful off-line analysis
to decide the attributes to be indexed and the granularity of traffic summaries to
be inserted into MIND. This database design analysis is based on the trade-off
between the cost of building the index, and the expected frequency of querying
the system.

Some of the research challenges that lie ahead in the design and development
of MIND are the following:

Load Balancing Load balancing lies in two levels: routing (i.e.,, how to reach
the node that contains the part of the index) and storage (i.e.,, where the index
should be stored over time). Routing load balancing can be achieved by main-
taining a balanced hypercube, while alleviating query hot-spots with replication.
Storage load balancing presents instead additional challenges. Remember the
mapping from the data space to nodes in MIND is locality-preserving. When the
data distribution is skewed, a careful partition is needed for balanced storage.
Prior works [4, 28, 17] addressed this problem in one-dimensional data space
with the method of node migration: light-loaded nodes leave their positions on
the overlay space to re-partition the overlay space assigned for heavy-loaded
nodes. While this approach can handle load dynamics well, it has three draw-
backs in the context of MIND: (i) Node leave and rejoin will cause a skewed

9



hypercube structure. (ii) The huge amount of tuples in MIND makes node
migration prohibitive. (iii) Local volatility will bring network oscillation such
that nodes are repeatedly moving back and forth, never converging to a stable
states. This is especially true when time-stamp is put into the data space for
indexing.

There are logically two layers in the mapping: a mapping from the data
space to the overlay space, and a mapping from the overlay space to nodes.
Node migration addresses load balancing by adjusting the latter. We believe
that in MIND adjusting the former is a better choice as it does not affect the
hypercube structure. We are investigating a de-centralized approach to remap
the data space.

Robustness MIND is a task specialized system and its nodes are not expected
as dynamic and various as those assumed in DHTs. The main robustness con-
cern here is to provide high data availability through replication. The choice of
replication sites should be considered under two conditions: 1) A replica should
not be too “far” away from the original data; otherwise, data replication will
bring a high overhead. 2) A replica should be easy to retrieve if the original
data is not available.

Query Optimization As in traditional databases, the efficient way to use
MIND is to build query-aware indices. For example, if the majority of the
queries are on attributes destination and octets, then building an index on
attributes destination, source, and octets will be less efficient than an index on
only destination and octets.

The complexity comes when there are more than one dominating query
forms. For example, suppose that a user have only two types of queries: q1

on octets and q2 on destination and source. If the probability of q1 is much less
than q2, a single index on all the three attributes will be sufficient. However, if
the probability of q1 equals that of q2, we need to consider to build two sepa-
rate indices one for q1 and the other for q2, and use classical secondary indices
techniques such as partial tuples with universal id numbers to deal with it.

When multiple indices coexist in MIND, it will be necessary to support
join across indices. We consider this to be out of scope for the CoMo project
and plan to leverage on existing solutions or current on-going research projects
within Intel that focus explicitly on distributed query processing.

7 Conclusion

We have presented here the main activities that form the research agenda of
the CoMo project. There is another large set of activities that are part of the
CoMo project and, although not discussed here, are instrumental to its success.
They include performance optimization techniques (e.g., load balancing, how to
efficiently monitor resource usage, how to predict query response times, etc.),
ease of use and deployment (e.g., how to make the development of new modules

10



simple and efficient, what libraries and services the CoMo core systems should
provide) and, finally, developing modules to use CoMo.

Acknowledgments

This document is the result of a large number of useful discussions with many
people involved at various levels in the CoMo project: Simon Crosby, Carl
Dellar, Christophe Diot, Rob Ennals, Joe Hellerstein, Larry Huston, Brad Karp,
Lukas Kencl, Derek McAuley, Andrew Moore, Ian Pratt, Luigi Rizzo, Timothy
Roscoe, Richard Sharp, Nina Taft.

References

[1] J. Aspnes and G. Shah. Skip graphs. In Proceedings of ACM-SIAM Sym-
posium on Discrete Algorithms, Jan. 2003.

[2] C. Barakat, G. Iannaccone, and C. Diot. Ranking flows from sampled
traffic. Technical report, Intel Research, Feb. 2005.

[3] Y. Bejerano and R. Rastogi. Robust monitoring of link delays and faults
in IP networks. In Proceedings of IEEE Infocom, Apr. 2003.

[4] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting scalable
multi-attribute range queries. In Proceedings of ACM Sigcomm, Sept. 2004.

[5] G. R. Cantieni, G. Iannaccone, C. Barakat, C. Diot, and P. Thiran. Refor-
mulating the monitor placement problem: Optimal network-wide sampling.
Technical report, Intel Research, Feb. 2005.

[6] D. Carney et al. Monitoring streams - a new class of data management
applications. In Proceedings of VLDB, 2002.

[7] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in
data streams. In Proceedings of ICALP, 2002.

[8] B. Y. Choi, J. Park, and Z. Zhang. Adaptive packet sampling for flow vol-
ume measurement. Technical Report TR-02-040, University of Minnesota,
2002.

[9] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: Tracking
most frequent items dynamically. In Proceedings of ACM PODS, June 2003.

[10] E. Demaine, A. Lopez-Ortiz, and I. Munro. Frequency estimation of in-
ternet packet streams with limited space. In Proceedings of 10th Annual
European Symposium on Algorithms, 2002.

[11] N. G. Duffield and C. Lund. Predicting resource usage and estimation ac-
curacy in an IP flow measurement collection infrastructure. In Proceedings
of ACM Sigcomm Internet Measurement Conference, Oct. 2003.

11



[12] N. G. Duffield, C. Lund, and M. Thorup. Properties and prediction of flow
statistics from sampled packet streams. In Proceedings of ACM Sigcomm
Internet Measurement Workshop, Nov. 2002.

[13] N. G. Duffield, C. Lund, and M. Thorup. Estimating flow distributions
from sampled flow statistics. In Proceedings of ACM Sigcomm, Aug. 2003.

[14] R. Ennals, R. Sharp, and A. Mycroft. Linear types for packet processing.
In Proceedings of European Symposium on Programming, 2004.

[15] C. Estan, S. Savage, and G. Varghese. Automatically inferring patterns of
resource consumption in network traffic. In Proceedings of ACM Sigcomm,
Aug. 2003.

[16] C. Estan and G. Varghese. New directions in traffic measurement and
accounting. In Proceedings of ACM Sigcomm, Aug. 2002.

[17] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online balancing of range-
partitioned data with applications to peer to peer systems. In Proceedings
of VLDB, Aug. 2004.

[18] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. IrisNet: An
architecture for a world-wide sensor web. IEEE Pervasive Computing, 2(4),
Oct. 2003.

[19] P. B. Gibbons and Y. Matias. Synopsis structures for massive data sets. DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science,
1999.

[20] N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A
scalable overlay network with practical locality properties. In Proceedings
of Usenix, Mar. 2003.

[21] N. Hohn and D. Veitch. Inverting sampled traffic. In Proceedings of ACM
Sigcomm Internet Measurement Conference, Oct. 2003.

[22] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and
I. Stoica. Querying the Internet with PIER. In Proceedings of VLDB,
2003.

[23] A. Hussain, J. Heidemann, and C. Papadopoulos. Identification of repeated
dos attacks using network traffic forensics. Technical report, USC, July
2004.

[24] G. Iannaccone, C. Diot, D. McAuley, A. Moore, I. Pratt, and L. Rizzo. The
CoMo white paper. Technical report, Intel Research, Sept. 2004.

[25] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley. Inferring
TCP connection characteristics through passive measurements. In Proceed-
ings of IEEE Infocom, Mar. 2004.

12



[26] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. On the place-
ment of internet instrumentation. In Proceedings of IEEE Infocom, Apr.
2000.

[27] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.
Cyclone: A safe dialect of C. In Proceedings of Usenix Conference, June
2002.

[28] D. R. Karger and M. Ruhl. Simple efficient load balancing algorithms for
peer-to-peer systems. In Proceedings of SPAA 2004, 2004.

[29] H.-A. Kim and B. Karp. Autograph: Toward automated, distributed worm
signature detection. In Proceedings of the 13th Usenix Security Symposium
(Security 2004), Aug. 2004.

[30] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet forward-
ing using efficient multi-dimensional range matching. In Proceedings of
ACM Sigcomm, Aug. 1998.

[31] X. Li, F. Bian, H. Zhang, C. Diot, R. Govindan, W. Hong, and G. Iannac-
cone. Advanced indexing techniques for wide-area network monitoring. In
Proceedings of NetDB Workshop, Apr. 2005.

[32] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range
queries in sensor networks. In Proceedings of ACM Sensys, Nov. 2003.

[33] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot. Characterization of failures in an IP backbone. In Proceedings
of IEEE Infocom, Mar. 2004.

[34] J. Mogul. Trace anonymization misses the point. World Wide Web Con-
ference, July 2002.

[35] D. Moore, C. Shannon, G. M. Voelker, and S. Savage. Internet quarantine:
Requirements for containing self-propagating code. In Proceedings of IEEE
Infocom, Mar. 2003.

[36] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The Click modular
router. In Proceedings of ACM Symposium on Operating Systems Princi-
ples, Dec. 1999.

[37] K. Papagiannaki, N. Taft, and C. Diot. Impact of flow dynamics on traffic
engineering design principles. In Proceedings of IEEE Infocom, Hong Kong,
China, Mar. 2004.

[38] K. Papagiannaki, N. Taft, Z. li Zhang, and C. Diot. Long-term forecasting
of internet backbone traffic: Observations and initial models. In Proceedings
of IEEE Infocom, San Francisco, USA, Mar. 2003.

13



[39] S. Ramabhadran, J. M. Hellerstein, S. Ratnasamy, and S. Shenker. Pre-
fix Hash Tree: An indexing data structure over distributed hash tables.
Technical report, Intel Research, 2004.

[40] A. Shaikh, J. Rexford, and K. G. Shin. Load-sensitive routing of long-lived
IP flows. In Proceedings of ACM Sigcomm, Sept. 1999.

[41] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The top speed of flash
worms. In Proceedings of WORM, Oct. 2004.

[42] K. Suh, Y. Guo, J. Kurose, and D. Towsley. Locating network monitors:
Complexity, heuristics and coverage. In Proceedings of IEEE Infocom, Mar.
2005.

[43] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An information
plane for networked systems. In Proceedings of the Second Workshop on
Hot Topics in Networking, Nov. 2003.

14


