
INTEL RESEARCH TECHNICAL REPORT IRC-TR-04-17 1

The CoMo White Paper
Gianluca Iannaccone†, Christophe Diot†, Derek McAuley†§,

Andrew Moore§, Ian Pratt§, Luigi Rizzo‡

† Intel Research

Cambridge, UK

§ Computer Laboratory

Cambridge University, UK

‡ Dip. Ingegneria dell’Informazione

University of Pisa, Italy

Abstract— CoMo (Continuous Monitoring) is a passive moni-
toring system. CoMo has been designed to be the basic building
block of an open network monitoring infrastructure that would
allow researchers and network operators to easily process and
share network traffic statistics over multiple sites. This paper
identifies the challenges that lie ahead in the deployment of such
an open infrastructure. These main challenges are: (1) the system
must allow any generic metric to be computed on the incoming
traffic stream, (2) it must provide privacy and security guarantees
to the owner of the monitored link, the network users and the
CoMo users, and (3) it must be robust in the face of anomalous
traffic patterns. We describe the high-level architecture of CoMo
and, in greater detail, the resource management, query processing
and security aspects.

I. I NTRODUCTION

Despite the great interest of recent years in measurement
based Internet research, the number and the variety of data
sets and network monitoring viewpoints remains unacceptably
small. Several players in the network measurement area,
like CAIDA [2], NLANR [19], RouteViews [25], RIPE [22],
Internet2 [13] and, recently, GEANT [9] have provided data
sets with various degrees of accuracy and completeness. Some
large commercial ISPs also deploy private infrastructures
and share limited information with the rest of the research
community [6], [8]. Other network operators (e.g., corporate
networks, stub ISPs, Universities) instead tend to lack a
measurement infrastructure or, in case they do have one,
do not share any data or even report the existence of such
infrastructure.

This situation constitutes a major obstacle for network
researchers. It hampers the ability to validate the results over
a wide and diverse range of datasets. It makes it difficult to
generalize results and identify the presence of traffic charac-
teristics that are invariant and common to all networks. For
example, it is difficult to quantify the magnitude of a denial
of service attack or a worm infection, to evaluate the relevance
of network pathologies such as in-network packet duplication
and reordering, or to simply identify the dominant applications
in the Internet.

So far, several barriers have limited the ability of researchers
to deploy and share large number of network datasets:

• The cost of the monitoring infrastructure that should be
present on a large set of links with speeds varying from

Revision date: September 25th, 2004.
Project web page: http://www.cambridge.intel-research.net/como.

the few Mbps of small organizations up to the 10Gbps
of ISPs’ networks.

• The lack of software tools for managing a passive mon-
itoring infrastructure. Today, monitoring systems use ad-
hoc tools that are not appropriate for large infrastructures.
For example, they tend to provide poor and inefficient
query interfaces.

• The lack of a standard open interface to access the mon-
itoring system. Although, several efforts exist to provide
a single packet trace format (e.g., tcpdump/libpcap [24],
IETF IPFIX working group [14]), no standard exists to
access high speed network monitoring devices.

• Organizations do not see any benefit in deploying passive
monitoring systems and sharing the information. Clearly,
this is not a need for classical network administration
tasks (e.g., reachability tests, loss rates, delays), but we
believe that the proliferation of denial of service attacks,
viruses and worms will help finding the right incentive in
sharing information and participating in a common effort
for understanding network traffic.

• The difficulty in controlling the access to the data avoid-
ing to disclose private information about network users
or organizations.

We have designed CoMo, an open software platform for
passive monitoring of network links. CoMo has been designed
to be flexible, scalable, and to run on commodity hardware.
With CoMo, we intend to lower the barriers described above
and encourage the deployment of a large scale monitoring
infrastructure. We believe this effort constitutes a necessary
first step towards a better understanding of network protocols
and traffic. For example, the extensible nature of CoMo
allows early deployment of novel methods for traffic analysis,
anomaly diagnosis or network performance evaluation.

The rest of the paper describes the challenges posed by the
design of the CoMo platform and its resulting architecture.
Then, we focus on specific aspects of CoMo that are open,
longer term issues, namely the query engine, resource man-
agement and security.

II. CHALLENGES

This section describes the requirements the CoMo systems
need to satisfy and the design challenges they need to address
in order to be successfully deployed.



INTEL RESEARCH TECHNICAL REPORT IRC-TR-04-17 2

A. Requirements

The design of a system such as CoMo is driven by the trade-
off between openness and resilience. The system should be
open enough to allow any user to compute any metrics on the
observed traffic. At the same time, the system should be robust
to guarantee no “black-out” periods, when it cannot sustain the
incoming packet rate, and no abuses by unauthorized users. We
can summarize the system requirements as follows:

Openness. The users should be able to customize the sys-
tem and the software platform to their specific needs and
deployment environment. For example, a user interested in
intrusion detection or performance analysis may only need
limited storage; on the other hand, an ISP’s network operator
interested in post-mortem analysis might require to store
and retrieve a large and detailed packet-level or flow-level
information.

The metrics also need to be dynamically configurable in
order to address a large range of applications such as network
trouble-shooting, anomaly and intrusion detection, SLA com-
putation, etc. In addition, the system should allow users to
easily interact and interface with it in order to start or stop
some metric computation or to run a query on the collected
datasets.

Resilience. This requirement is often orthogonal to the previ-
ous one. First and most important, the system should be able
to monitorandanalyze the traffic in any load condition, and in
particular in the presence of unexpected traffic anomalies that
may overload the system resources. The system should control
its resources carefully. For example, the computation of one
metric should not monopolize the use of resources, starving
other crucial system tasks (e.g., packet trace collection). The
owner of the system needs to be able to control the access
to the system. Various type of users will want to access a
monitoring system, including malicious ones. Because of its
exporting capabilities, a system can impact the network it
measures. Different request will be processed with different
priorities. The system should also make sure it does not
compute the same metric twice for two different users or
applications.

B. Design Challenges

Given the requirements described above, we identify four
main design challenges:

Ease of deployment. The success of the CoMo infrastructure
will be a function of how simple it is for user to access
the infrastructure, specify and implement traffic metrics and
analysis methods, query the data from the system. As we
will point out in Section III, many of the design decisions
are driven by the need to trade architecture simplicity for
efficiency and performance.

Query interface. Designing a query interface with the con-
straints defined in the requirement section poses two problems:
(i) how to express the query;(ii) how to run the query without
explicit built-in support into the system. Expressing a query
may be particularly hard given that the system is supposed to

be used by a large range of users, defining new traffic metrics
and analysis methods. It is unlikely that all metrics will be
specified well enough to be translated in a standard query
language; metrics may require new constructs that are not
present in the original query language. However, the system
should still allow custom-built queries to run. We will address
this problem in Section IV.

Resource Management. Opening the system to a poten-
tially large number of users requires a very careful resource
management, i.e. CPU, memory, I/O bandwidth or storage
space. Indeed, allowing users to compute any metric on the
traffic stream may result in analysis that are particularly
computing intensive, and in a large amount of data to be
exported. Therefore, the system needs to define strict policies
for analysis metrics and needs to be able to enforce them and
possibly to adapt based on the load of the system. We will
address the problem of resource management in Section V.

Security issues. CoMo users will have different rights on
the system depending also on the system environment. For
example, a network operator may be allowed to inspect the
entire packet payload in order to spot viruses or worms, while
a generic user may only be able to access the packet header
(probably anonymized). A second security aspect is related
to the vulnerability of the monitoring system. CoMo systems
contain confidential information. They can also export large
amounts of traffic and impact the network where they are in-
stalled. An attacker may also target directly the CoMo system
by preventing users to access the system or by corrupting the
collected data. In Section VI we will describe the threat model
for CoMo and propose initial solutions.

III. A RCHITECTURE

This section presents a high-level description of the ar-
chitecture and an overview of the major design choices. We
call data any measurement related information. Data include
original packets captured on the monitored links, as well as
statistics computed on the packets and other representations
of the original packet trace such as flow records.

A. High level architecture

The system is made of two principal components. Thecore
processescontrol the data path through the CoMo system,
including packet capture, export, storage, query management
and resource control. Theplug-in modulesare responsible for
various transformations of the data.

The data flow across the CoMo system is illustrated in
Figure 1. The white boxes indicate plug-in modules while
gray boxes represent the core processes. On one side, CoMo
collects packets (or subsets of packets) on the monitored link.
These packets are processed by a succession of core processes
and end stored onto hard disks. On the other side, data are
retrieved from the hard disk on user request (by the way of
queries addressed to a CoMo system). Before being exported
to users, those data go through an additional processing step.

As explained earlier, the modules execute specific tasks on
data. The core processes are responsible for the “management”



INTEL RESEARCH TECHNICAL REPORT IRC-TR-04-17 3

Fig. 1. Data flow in the CoMo system

operations, common to all modules (e.g., packet capture and
filtering, data storage). The following tasks also fall under
the responsibility of the core component:(i) resource man-
agement, i.e., deciding which plug-in modules are loaded
and running,(ii) policy management to manage the access
privileges of the modules,(iii) on-demand requests handling
to schedule and respond to user queries, and finally(iv)
exception handling to manage the situation of traffic anomalies
and the possible graceful degradation of system performance.

The modules take data on one side and deliver user-defined
traffic metrics or processed measurement data on the other
side. One of the challenges identified in Section II is to
keep modules very simple. All complex functions should be
implemented within the core component. This strict division
of labor allows us to optimize the core component1, while
the modules can run sub-optimally and can be implemented
independently by any CoMo user.

B. The core processes

The core processes are in charge of data movement opera-
tions (i.e., from the packet capture card to memory and to the
disk array). Moving data in a PC is the most expensive task
given memory, bus and disk bandwidth limitations. Therefore,
in order to guarantee an efficient use of the resources, it
is better to maintain a centralized control of the data path.
However, one of the goal of the architecture is to allow the
deployment of CoMo as a cluster using dedicated hardware
systems (such as network processors) for high performance
monitoring nodes.

Communication between core processes is governed by a
unidirectional message passing system to enable the partition
of functionality over a cluster.

In a single system, a CoMo node uses instead shared
memory and Unix sockets for the signaling channel. The use
of processes instead of threads is justified by the need of high
portability of the software over different operating systems.

Two basic guidelines have driven the assignment of the
functionalities among the various processes. First, functionali-
ties with stringent real-time requirements (e.g., packet capture

1The CoMo code is open source and we aim to build an open community
of developers in charge of the core components.

or disk access) are confined within a single process (capture
and storage, respectively). The resources assigned to these
processes must be able to deal with worst case scenarios. Other
processes instead operate in a best-effort manner (e.g.,query
andsupervisor) or with less stringent time requirements (e.g.,
export). Second, each hardware device is assigned to a single
process. For example, thecaptureprocess is in charge of the
network sniffer, whilestoragecontrols the disk array.

Another important feature of our architecture is the decou-
pling between real-time tasks and user driven tasks. This is
visualized by the vertical lines in Figure 1. This decoupling
allows us to control more efficiently the resources in CoMo
and to avoid that a sudden increase in traffic starves query
processing, and vice-versa.

We now describe the five main processes that compose the
core of CoMo:

• Thecaptureprocess is responsible for the packet capture,
filtering, sampling and maintaining per-module state in-
formation;

• Theexportprocess allows long term analysis of the traffic
and provides access to additional networking information
(e.g., routing tables);

• The storageprocess schedules and manages the accesses
to the disks;

• The query process receives user requests, applies the
query on the traffic (or reads the pre-computed results)
and returns the results;

• Thesupervisorprocess is responsible for handling excep-
tions (e.g., process failures) and to decide whether to load,
start or stop plug-in modules depending on the available
resources or on the current access policies.

The capture process receives packets from the network
card (that could be a standard NIC card accessed via the
Berkeley Packet Filter [17], or using dedicated hardware such
an Endace DAG card [7]). The packets are passed through a
filter that identifies which modules are interested in processing
the packets. Then thecaptureprocess communicates with the
modules to have them process the packets and update their
own data structures. Note that those data structure may also
be maintained by thecapture process in order to keep the
module simple.



INTEL RESEARCH TECHNICAL REPORT IRC-TR-04-17 4

Periodically,capturepolls the data structures updated by the
modules and sends its content to theexport process. These
data structures are then ready to be processed again by the
modules. As explained earlier, this way, we decouple real-time
requirements of thecaptureprocess that deals with incoming
packets at line rate from storage and user oriented tasks.
Flushing out the data structure periodically also allowscapture
to maintain limited state information and thus reduce the cost
of insertion, update and deletion of the information stored by
the modules.

Theexportprocess mimics the behavior ofcapturewith the
difference thatexport handles state information rather than
incoming packets. Therefore,export communicates with the
modules to decide how to handle the state information. A
module can requestexport to store the information and/or to
maintain additional, long term information. Indeed, as opposed
to capture, exportdoes not flush periodically its data. Instead,
it needs to be instructed by the module to get rid of any data.

The storage process takes care of storingexport data to
the hard disk. Thestorageprocess is data agnostic and treats
all data blocks equally2. It can thus focus on an appropriate
scheduling of disk accesses and on managing disk space. The
storageprocess understands only two type of requests: ”store”
requests fromexportand ”load” requests fromquery.

Thequeryprocess manages users’ requests, and if access is
granted to the user, it gets the relevant data from disk via the
storageprocess and returns the query results to the user. If the
requested data is not available on disk, thequeryprocess can
(i) perform the analysis on the packet trace stored on the disk
(if the request refers to a period in the past) or(ii) request
the initialization of a new module by thesupervisorprocess to
perform the query computation on the incoming packet stream.

Finally, thesupervisormonitors the other processes and de-
cides which modules can run based on the available resources,
access policies and priorities. Thesupervisorcommunicates
with all the other processes to share information about the
overall state of the system.

C. Plug-in Modules

The traffic metrics and statistics are computed within a
set of plug-in modules. The modules can be seen as a pair
filter:function, where the filter specifies the packets on which
the function should be performed. For example, if the traffic
metric is ”compute the number of packets destined to port
80”, then the filter would be set to capture only packets
with destination port number 80, while the function would
just increment a counter per packet. Note that all modules
do not necessarily compute statistics. Modules can simply
transform the incoming traffic, like for example transform a
set of packets in a flow record.

The core processes are responsible for running the packet
filters and communicate with the modules using a set of
callback functions. Actually there are several sets of callback
functions, one for each of the core processes (represented by

2A viable alternative is to allowstorageto filter some of the data blocks
as early as possible to reduce data movement and processing, following an
approach similar to Diamond [12].

the three columns of white boxes in Figure 1). Going back to
the previous example, thecaptureprocess will use a callback
(update() ) to let the module increment the counter. Then
the export process will use a different callback (store() )
to move the counter value to the disk. Also,exportcould use
another callback to allow the module to apply, for example, a
low pass filter on the counter values. TheQueryprocess will
then use a different callback (load() ) to retrieve the counter
value from disk.

It is important to observer that the core processes are agnos-
tic to the state that each module computes. Core processes just
provide the packets to the module and take care of scheduling,
policing and resource management tasks.

IV. QUERYING NETWORK DATA

The query engine is the CoMo gateway to the rest of the
world. The main function of queries is to request CoMo
to export data. The range of data to be exported can vary
significantly, from raw packet sequences to aggregated traffic
statistics.

The processing of a query can be divided in three steps:(i)
validate and authorize the query (as well as its origin),(ii)
find and/or process the data and, finally,(iii) send the data
back to the requester.

The amount of data stored on a CoMo system can be very
large (in the order of 1TB on current prototypes). It is thus
desirable to reduce the amount of processing needed to answer
a query to a minimum. This is, indeed, the main purpose of
the CoMo modules: pre-compute data to minimize the cost of
processing incoming queries.

In CoMo we identify three types of queries:

• Static queriesdefined in the system configuration together
with the relevant module. This kind of query will appear
in the form ’send-to <IP address>:<port>’
and follow a push information model, i.e. as the module
computes the metric on the traffic stream, data is sent
to the specified IP address. It is clear that this type of
queries does not require any explicit support from the
query engine.

• On-demand queriesexplicitly specify the relevant mod-
ule. This could happen in two ways: indicating the name
of the module in the query itself or sending directly
the module source code. The query would then have to
indicate the packet filter to be applied to the packet stream
and the time window of interest. The response consist in
the output of the module. On reception of this query,
the CoMo system has to authenticate the module and
the requester, and then figure out if the same module
has already been installed. If the same module has been
running during the time of interest, then this query revert
to a static query. Otherwise, it requires the module to run
on the stored packet-level trace3 with an obvious impact
on the query response time.

3Note that every CoMo system is supposed to keep a packet-level trace
at all times. The duration of the packet trace will depend on the available
storage space and the link speed.



INTEL RESEARCH TECHNICAL REPORT IRC-TR-04-17 5

• Ad-hoc querieshave no explicit module defined. These
queries are written in a specific query language and
code for the modules is generated on the fly. A similar
approach is followed in systems like Aurora [3], Tele-
graphCQ [4], Gigascope [6] or IrisNet [10]. The caveat
of this kind of approach is that it cannot exploit existing
modules that have been already running on the packet
stream. One alternative would be to have all modules,
even custom-made one, to specify the computation they
are performing using the query language and then com-
pare the received query with all the modules to find a
module that is computing asuper-setof the response.
Then, compile the new query using as input the super-
set as well. Clearly, this method cannot be applied to
modules that compute metrics that cannot be expressed
in the query language. In that case, the user has no other
option than to write a custom module and use the on-
demand query approach.

One of the big challenges of the system is to manage queries
both in terms of computing resources and data transfers.
Processing a query should not jeopardize the ability of the
system to collect the packet-level trace without losses. Thus,
it is important for the system to predict the usage of resources
of a query before scheduling it to run. This can be easily
done for static queries (the module is known in advance to
the system), while it is more challenging for other type of
queries.

Moreover, the system should take into account the pri-
ority of queries and that of all the other modules in the
system that are pre-processing data for future queries. Indeed,
some queries might be urgent (e.g., real-time security related
information) and it might be appropriate not to delay the
computation of the query (at the cost of other CoMo tasks).

Finally, it is most probable that multiple CoMo systems
will be present in a network. Consequently, more than one
system may be needed to answer a query or multiple systems
may coordinate to identify the most appropriate subset of
them over which to run the query. For example, a system
could be more appropriate than others depending on the
relevance of the monitored traffic for the query, (e.g., when
tracking a denial of service attack) or the current system
load. Moreover, some of these systems will have data to
export, some will not. Therefore, an additional challenge is
to design a query management system that minimizes the
search and export cost in the context of distributed queries.
For this specific challenge, we will also investigate innovative
solutions for query management proposed in the context of
sensor networks [1], [16].

V. RESOURCEMANAGEMENT

Managing system resources (i.e. CPU, hard disk, memory)
in CoMo is challenging because of two conflicting system
requirements. On the one hand, the system should be open to
users to add plug-in modules for new traffic metrics and to
query the system. On the other hand, the system needs to be
always available, guarantee a minimum performance level and
compute accurately the metrics that are of interest at a given
time.

We divide the major causes of resource consumption in
three categories: traffic characteristics, measurement modules,
and queries. In the following we will address each of them
separately.

Traffic characteristics. Resource utilization depends heavily
on the incoming traffic. Unfortunately, periods of high traffic
load are impossible to predict. Moreover the traffic characteris-
tics that overloads the system largely depends on the modules
(and filters) that are running at the time. Indeed, incoming
traffic impacts the modules’ activity, not simply the activity
of the core processes. For example, a module could be idle
for long periods and then have a burst of activity when packets
hit its filter. A module computing flow statistic would become
very greedy in case of DoS attack. Moreover, the amount
of computations per packet will often depend on the packet
content (e.g., IDS). The characteristics of the traffic, together
with the nature and number of active modules also impact
directly the storage. For reasons listed above, there will be
periods where large amounts of data will have to be stored to
disk.

Modules. In order to control the resources used by modules,
we have defined a set of constraints on their capabilities:
• Modules can be started and stopped at any time. Mod-

ules are prioritized based on resource consumption and
managed accordingly. We also rely on the fact that most
module can be run off-line at a later time on the packet
trace.

• Modules have access to a limited set of system calls. They
cannot allocate memory dynamically and have no direct
access to any I/O device. This allows us to maintain the
control over the resource usage within the core processes
and, at the same time, it keeps the module source code
simpler.

• Modules do not communicate with each other. Modules
are independent. They do not share any information
with other modules. This constraint simplifies resource
management, although it introduces redundancies. For ex-
ample, one module cannot pass pre-processed information
to another module. This way, different modules might
perform the same computations on the same packets.

These three module requirements allow the CoMo system
to regulate the amount of computing resources used at a given
time. However, the decision on whether to start or stop a
module depends on two parameters:(i) the measured resource
usage of the module and(ii) the relevance of the metric
computed by the module. The optimization of the sets of
modules run at a given time is also a challenging issue. It
is very difficult to estimate the resource usage (that depends
on incoming traffic) and the relevance of a given metric can
also vary significantly over time.

Queries. Queries can come at anytime and cause resource
consumption for authentication, module insertion or removal,
data processing. The query engine will have to manage the
impact of the query processing on the system resources and
active modules. The main issue with queries is that they should
have higher priority than existing modules. A query indicate



INTEL RESEARCH TECHNICAL REPORT IRC-TR-04-17 6

that a user exists and is waiting for results, while modules
are just pre-computing queries based on the assumption that
some users will be interested. On the other hand, in presence
of a large number of queries, running them at high priority
may force the CoMo system to be a simple packet collector,
reducing the usefulness of the modules.

A. Resource control options

As described above, the prediction of resource utilization
is almost impossible given the different factors that affect it.
Therefore, we have no other option than accurately measuring
resource utilization and timely react to overload situations.
We need to identify what “knobs” can be turned to control
resource utilization.

In CoMo, resource management is threshold-based. The
resource usage of a CoMo system is monitored continuously in
term of CPU cycles, memory usage and disk bandwidth. If the
usage exceeds the pre-defined high-threshold, the following
actions can be taken:(i) sample the incoming traffic for
certain modules;(ii) stop some modules;(iii) block incoming
queries.

The specific action to be taken should depend on the module
priorities. As we said earlier, most modules can be delayed
and run at a later time on the stored packet trace. The
priority of a module should depend on the requested response
time of the potential query that needs the data computed by
the module. For example, a module computing a metric for
anomaly detection should have high priority given that a query
for anomalies requires in general a very short response time.

The module priority should then adapt to the query currently
running on the system as well as on the historical queries that
the system has received. At configuration time, the system
administrator will define a static priority for each module that
will then vary depending on how often the data processed by
a module are actually read.

VI. SECURITY ISSUES

There is no doubt that the greatest challenge in providing an
open monitoring service to users consists in enforcing access
policies and safeguarding the privacy of network users.

One static policy applied to all systems is not enough given
the large number of different uses that we envision for the
monitoring infrastructure. For example, the network operator
that owns the monitored link may have complete access to
the traffic, including the payload. Other users should instead
only be allowed to view the packet header or even just an
anonymized versions of it. Finally, some queries could be
limited to a subset of the users in order to avoid a constant
overload of the system or to increase network traffic (e.g., all
queries that require large data transfers).

Hence, a rich and descriptive policy language is needed. The
policy should define which modules can be plugged into the
system, which users can plug modules in, and which users can
post queries to the system together with the type of queries
they can post.

A. Access policies

The only access points to the system for users is the plug-
in interface where new modules are added and the query
interface. However, note that a query always results in a
module being plugged into the system. Therefore, in the rest of
this section we will consider only the case of a user requesting
to plug in a module.

The module is described by the two componentsfil-
ter:function. It is possible to assignaccess request levelsto
each component. These access requests levels indicate the
privilege level at which the module has to run (and that has
to match the user access privileges). For example, a filter that
specifies “anonymized packet headers” will have the lowest
access request level, while a filter that desires to have access
to “not anonymized packet payloads” will be marked with the
highest access request level.

Assigning access requests level for thefunctions of the
modules is a much harder problem. It requires a deep under-
standing of what the module is computing and storing to disk.
The solution that is often adopted is to allow the function
to perform any computation but to restrict significantly the
filter. NLANR, for example, provides only anonymized packet
header traces but does not impose any condition on what user
do with the traces [19]. Unfortunately, this approach is not
appropriate in general. For example, worm signature detection
requires full inspection of the packet stream although the state
information it maintains (worm traffic) has little relevance and
would certainly have a low access request level.

The approach followed by CoMo is to allow to load on
the system only “signed” modules, for which the original
developer can be authenticated. Then the module’s function
will inherit the developer privileges.

User access privileges will initially depend on the CoMo
system itself:(i) public access system will allow any user to
plug-in modules and query the system;(ii) restricted system
where only a subset of the users are allowed to plug-in new
modules and the rest of the users can only perform queries
on metrics for which a module already exists;(iii) private
access, where only a subset of users can plug-in modules and
query the system. In the future, we envision that each user
will have individual privilege levels that will decide whether
a filter:function pair is allowed to run on CoMo.

B. Infrastructure Attacks

So far, we have only addressed the security of the data. We
now discuss the possible attacks on the monitoring infrastruc-
ture. We consider two types of attacks:

Denial of service attacks. Attacks in this class may come in
the form of a module that uses a disproportionate amount of
resources or that corrupts the data owned by other modules.

The former type of attacks could be dealt directly with the
resource manager and the use of “module black list” to forbid
a module to run again in the system. Also, the use of a sandbox
or of signed modules may help in avoiding this class of attacks
and finding out a module’s real “intentions”. In fact, because
modules process incoming traffic, on which we have little if



INTEL RESEARCH TECHNICAL REPORT IRC-TR-04-17 7

any control, even a perfectly legal module could be driven into
consuming large amount of resources in response to certain
input patterns. In general this problem is dealt with by the
generic resource control mechanisms discussed in Section V.

The second class of attacks (data corruption) is harder to
defend against. One first immediate solution is to provide
memory isolation between modules. This can be achieved
running modules as separate processes or moving some of
the CoMo functionalities in the kernel. This introduces some
overhead on the system but would guarantee that two modules
will not interfere with each other.

Attack on the access policies. This class of attacks include
attacks on the user privileges or on the access request level of
a filter or function. For example, one can envision an attack
on the packet anonymization scheme that would allow a user
with low privileges to run a filter with high access level. An
attack on the anonymization scheme could consist in sending
carefully-crafted packets to the system and use a module that
captures the anonymized version of those packets in an attempt
to break the anonymization scheme [26].

VII. R ELATED WORK

The list of software and techniques for active monitor-
ing and network performance metrics computation is long.
NIMI [21] is the pioneer in the deployment of active mon-
itoring infrastructures, while CAIDA [2] has made available
a large set of tools for active monitoring. The IETF IPPM
Working Group is also working on the standardization of
metrics for active monitoring [15].

The area of passive monitoring is much less rich than active
monitoring, mostly because of the deployment constraints of
passive monitoring systems (i.e. active monitoring systems can
be deployed at the edge of networks, when passive monitors
must be deployed inside networks). The first generation of
passive measurement equipment has been designed to collect
packet headers at line speed on an on-demand basis. This
generation of monitoring systems is best illustrated by the
OC3MON [19], Sprint’s IPMON [8] or NProbe [18] expe-
rience. Pandora [20] allows to specify monitoring components
and this way provides greater flexibility in specifying the
monitoring task. However, it differs from our approach in that
it enforces a strict dependency among components and does
not allow to dynamically load/unload some components.

Routers also embed monitoring software such as for exam-
ple Cisco’s Netflow [5]. Netflow collects flow level statistics
on router line cards. Given the severe power and space
constraints on routers, Netflow cannot store large amount
of records but it exports all the information it capture to
an external collector. This forces network operators to apply
aggressive packet sampling (in the order of 0.1%) to reduce
the data transfer rate from the routers.

Recently, the database community has approached the prob-
lem of Internet measurements. Several solutions have been
proposed that deploy stream databases techniques. AT&T’s
Gigascope [6] is an example of a stream database that is
dedicated to network monitoring. The system support a subset
of SQL but it is proprietary and no measurement data is made

publicly available. Other systems such as Telegraph [4] or
PIER [11], IrisNet [10], Aurora [3], PHI [23] address the
problem of continuous and distributed queries and as such
are very relevant to CoMo.

CoMo is different from the existing passive monitoring
projects in various ways. First, CoMo is designed to be open
to implement a wide and dynamic set of traffic metrics. CoMo
intends (1) to use a stream database approach to manage
network data and queries, (2) to develop a complex resource
management and access policy mechanism, (3) to follow
a distributed approach to network monitoring (i.e. CoMo
systems can cooperate to monitor a network more efficiently).

The successful design of CoMo requires the convergence
of successful system design (integration, resource control, se-
curity) and challenging fundamental research in areas such as
data summarization, query and data management, distributed
sampling.

VIII. C ONCLUSION

We have presented the architecture of an open system for
passive network monitoring. We have justified the design
choices and indicated the three main open issues that are
crucial for the success of the monitoring infrastructure: query
engine, resource management and security of the system.

There is a number of other issues that have not been
addressed in this paper but are currently under investigation:
(i) coordination of multiple CoMo system to respond to a
query or balance the computation load;(ii) optimal placement
of CoMo system as well as modules to guarantee visibility on
the traffic even in presence of network failures or re-routing
events;(iii) use of sampling for reducing the load on the
system in a controlled fashion;(iv) how to port the current
architecture to other hardware systems, such as routers or
network processors.

ACKNOWLEDGMENTS

We would like to thank Larry Huston, Pere Barlet, Euan
Harris, Lukas Kencl, and Timothy Roscoe for their help,
feedback and comments on this work.

REFERENCES

[1] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting
scalable multi-attribute range queries. InProceedings of ACM Sigcomm,
Sept. 2004.

[2] CAIDA: Cooperative Association for Internet Data Analysis.
http://www.caida.org.

[3] D. Carney et al. Monitoring streams - a new class of data management
applications. InProceedings of VLDB, 2002.

[4] S. Chandrasekaran et al. TelegraphCQ: Continuous dataflow processing
of an uncertain world. InProceedings of CIDR, 2003.

[5] Cisco Systems. NetFlow services and applications. White Paper, 2000.
[6] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope:

A stream database for network applications. InProceedings of ACM
Sigmod, June 2003.

[7] Endace. http://www.endace.com.
[8] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, R. Rockell, D. Moll,

T. Seely, and C. Diot. Packet-level traffic measurements from the Sprint
IP backbone.IEEE Network, 2003.

[9] GEANT. http://www.dante.net.
[10] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. IrisNet: An

architecture for a world-wide sensor web.IEEE Pervasive Computing,
2(4), Oct.



INTEL RESEARCH TECHNICAL REPORT IRC-TR-04-17 8

[11] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and
I. Stoica. Querying the Internet with PIER. InProceedings of VLDB,
2003.

[12] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Stayanarayanan,
G. Ganger, E. Riedel, and A. Ailamaki. Diamond: A storage architecture
for early discard in interactive search. InUsenix FAST, Mar. 2004.

[13] Internet2. http://www.internet2.org.
[14] IP Flow Information eXport Working Group. Internet Engineering Task

Force. http://www.ietf.org/html.charters/ipfix-charter.html.
[15] IP Performance Metrics Working Group. Internet Engineering Task

Force. http://www.ietf.org/html.charters/ippm-charter.html.
[16] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range

queries in sensor networks. InProceedings of the ACM Sensys, Nov.
2003.

[17] S. McCanne and V. Jacobson. The BSD Packet Filter: A new architecture
for user-level packet capture. InUSENIX Winter, Jan. 1993.

[18] A. Moore, J. Hall, E. Harris, C. Kreibech, and I. Pratt. Architecture of
a network monitor. InProceedings of Passive and Active Measurement
Workshop, Apr. 2003.

[19] NLANR: National Laboratory for Applied Network Research.
http://www.nlanr.net.

[20] S. Patarin and M. Makpangou. Pandora: A flexible network monitoring
platform. In Usenix, 2000.

[21] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An architecture for
large-scale internet measurement.IEEE Communications, 36(8), 1998.

[22] RIPE R̀eseaux IP Europ̀eens. http://www.ripe.net.
[23] T. Roscoe and J. Hellerstein. Phi lrp white paper. Technical report, Intel

Research, Sept. 2004.
[24] tcpdump/libpcap. http://www.tcpdump.org.
[25] University of Oregon Route Views Project. http://www.routeviews.org.
[26] J. Xu, J. Fan, M. Ammar, and S. Moon. Prefix-preserving IP ad-

dress anonymization: Measurement-based security evaluation and a new
cryptography-based scheme. Nov. 2002.


