
Approximate Fingerprinting to Accelerate Pattern Matching

Ramaswamy
Ramaswamy

Univ. of Massachusetts

rramaswa@ecs.umass.edu

Lukas Kencl
Intel Research
Cambridge, UK

lukas.kencl@intel.com

Gianluca Iannaccone
Intel Research
Cambridge, UK

gianluca.iannaccone@intel.com

ABSTRACT
Pattern matching and analysis over network data streams
is increasingly becoming an essential primitive of network
monitoring systems. It is a fundamental part of most in-
trusion detection systems, worm detecting algorithms and
many other anomaly detection mechanisms. It is a processing-
intensive task, usually requiring to search for a large number
of patterns simultaneously.

We propose the technique of “approximate fingerprinting”
to reduce the memory demands and significantly accelerate
the pattern matching process. The method computes finger-
prints of prefixes of the patterns and matches them against
the input stream. It acts as a generic preprocessor to a stan-
dard pattern matching engine by “clearing” a large fraction
of the input that would not match any of the patterns. The
main contribution is the “approximate” characteristic of the
fingerprint, which allows to slide the fingerprinting window
through the packet at a faster rate, while maintaining a
small memory footprint and low number of false positives.
An improvement over a Bloom filter solution, a fingerprint
can indicate which patterns are the candidate matches. We
validate our technique by presenting the performance gain
for the popular Snort intrusion detection system with the
preprocessor in place.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring; I.5.2
[Design Methodology]: Classifier design and evaluation;
C.2.0 [General]: Security and protection

General Terms
Performance, Design, Measurement

Keywords
Pattern matching, intrusion detection, fingerprint, deep packet
inspection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’06, October 25–27, 2006, Rio de Janeiro, Brazil.
Copyright 2006 ACM 1-59593-561-4/06/0010 ...$5.00.

1. INTRODUCTION
Pattern matching is an extremely common function im-

plemented in many monitoring systems to support a wide
range of applications. Most intrusion, virus or worm de-
tection systems [13, 11] operate by comparing an incoming
packet stream against a database of patterns known to be
present in exploits or worms. These systems have become
extremely popular and are being deployed in various oper-
ating environments (from end-hosts, to small switches and
routers to passive monitoring devices inside the network).

The large-scale deployment is accompanied by rapid growth
of the database of content strings. However, pattern match-
ing is a very processing intensive task since patterns have to
be compared byte by byte to the input string. Any method
to accelerate pattern matching can operate on two variables:
the per-pattern processing cost and the per-input-string pro-
cessing cost. The former has been the subject of extensive
past research and several algorithms have been proposed
that can compare a large number of patterns at once. They
return precise matches at a processing cost independent of
the number of patterns searched [1, 4, 21]. Reducing the
per-input-string processing cost is instead inherently harder.
Exact matches have a cost linear with the length of the string
given that there is no alternative to comparing the string
against the patterns byte by byte. Research in this area has
focused on optimizing the existing multi-pattern matching
algorithms, mainly to reduce the memory footprint of those
methods [20].

In this paper we propose “approximate fingerprinting” to
pre-process the input string and return approximate matches.
The method computes a fingerprint over a sliding window of
bytes in the input string and compares it against a database
of fingerprints derived from the patterns that are searched.
The approximation comes from the fact that at each step
the window slides by more than one byte, reducing this way
the number of memory accesses per-packet but introducing
additional errors in the matching. Our method returns a
subset of the original input strings that are good candidates
for a matching pattern and guarantees that this subset will
contain all the input strings that do match at least one of the
patterns. In addition, the candidate packets may carry the
information which patterns can actually match. The candi-
dates can then be processed by one of the precise pattern
matching algorithm proposed in the literature to eliminate
any false positives.

The performance gain with the approximate fingerprint-
ing comes from the reduction in the number of strings the
complex matching algorithm has to process. Our design ex-

hibits the following properties: (i) fast to compute, (ii) small
memory footprint to be easily implemented in hardware, and
(iii) small false positive rate and zero false negatives (i.e., no
strings that would match a pattern are ever missed). These
are desirable properties for implementation on a network
system such as a switch or router. The processing environ-
ment on such systems is resource limited in terms of both
processing and memory with real-time constraints.

The gain can be significant in all cases where the occur-
rence of strings matching any of the patterns is a relatively
rare event. Our method would “clear” a vast majority of
the strings, forwarding just a small subset to the more com-
plex precise matching algorithm. In those cases where most
strings do match a pattern (e.g., worm infection for net-
work intrusion detection systems) our method introduces a
very limited overhead, which can be eliminated by a hard-
ware implementation. Furthermore, the subsequent pattern
matching method may still well benefit by exploiting the
hints about the location of the candidate matches and the
relevant rules as indicated by the preprocessor.

We have implemented a prototype of our approximate fin-
gerprinting method as a pre-processor for the Snort network
intrusion detection platform. Snort presents a perfect ap-
plication to our method given the large database of con-
tent strings that it searches in the packet stream. The pre-
processor is placed inline with other existing pre-processing
that Snort performs and reduces the amount of packets that
need to be searched by exact pattern matching algorithms
in the detection engine of Snort.

We evaluate our implementation using the current database
of Snort rules and packet traces with full payloads collected
on a residential university access network [9]. We show that
our method has an extremely small footprint (in the order of
tens of Kbytes for thousands of patterns) and can reduce the
load (in terms of processed packets) for the precise matching
algorithm to less than 14%.

2. RELATED WORK
String pattern matching is a classical problem in com-

puter science and there exists a large body of work in the
literature. The Aho-Corasick [1] and Commentz-Walter [4]
algorithm belong to the most commonly used multi-pattern
matching algorithms. Both however present an extremely
large memory footprint and in their original form are suit-
able only for software implementation with obvious through-
put limitations.

For these reasons several modifications to the Aho-Corasick
algorithm have been recently proposed to allow a hardware
implementation using FPGAs [18, 19, 6] or network proces-
sors [3]. Other proposals attempt to reduce the memory
footprint of Aho-Corasick assuming the availability of ex-
tremely large memory bus to avoid the performance limita-
tions [20]. Our work complements these efforts by providing
a method with an extremely small memory footprint that is
able to reduce the number of packets that need to go through
the full Aho-Corasick pattern matching.

The idea of filtering packets that are not going to match
any of the intrusion detection rules has been explored in the
literature using Bloom filters [5, 2, 16]. The limitations of
these method lie mainly on the large memory footprint re-
quired by the Bloom filter (particularly for a large number
of keys and a low false positive rate). This severely limits
the applicability of the methods given that a precise pat-

tern matching algorithm still needs to run to eliminate the
false positives produced by the Bloom filter. Furthermore,
a Bloom filter provides a boolean answer to the suspicious
set-membership question but no information on which pat-
terns are likely to match. Our proposal is based instead
on string fingerprints. Originally introduced by Rabin [12],
they have been used to find sets of files that are similar [8], to
reduce network traffic by eliminating identical packets [17],
and more recently to detect network worm activity by find-
ing commonly occurring patterns in the packet payloads [7,
14, 10].

Sommer and Paxson [15] augment signature based intru-
sion detection systems such as Snort with additional context.
Their goal is to reduce the false positive rate and improve
signature matching performance. A direct comparison with
their work is not possible due to considerable differences in
Snort versions/rulesets and testing platforms.

3. DESIGN CONCEPTS
In the design of any approximate pattern matching method

the objective is to find the right balance between the compu-
tational complexity, that is mainly in terms of instructions
and memory access per packet, the memory footprint re-
quired by the data structure and consequently the lookup
times, and the false positive rate, i.e. the patterns that are
matched erroneously. In the following we address each of
this aspect separately and illustrate the key design concepts
behind our proposal.

Approximate Fingerprinting. The basic idea is to quickly
examine packet payloads and probabilistically determine what
patterns, if any, the payload contains. To this end, we utilize
Rabin’s fingerprints. A fingerprint is a short tag for a longer
object (pattern or string). If two fingerprints are different,
then the objects that the fingerprints represent are certainly
different. The probability that two different objects map to
the same fingerprint are small. A Rabin fingerprint is the
polynomial representation of the object modulo a predeter-
mined irreducible polynomial.

We build a fingerprint table that contains the Rabin’s
fingerprint of the first w bytes of each pattern we are trying
to match. Fingerprints are then computed over a sliding
window of size w bytes on the packet payload and used to
index the fingerprint table (see Figure 1a). If a match is
found in the table, the packet is annotated to indicate the
possible matching patterns. Otherwise, given that no match
is found, the packet can entirely bypass the precise pattern
matching module1.

Reducing memory accesses. Sliding forward the window
by one byte at each step results in a number of accesses to
the fingerprint table almost linear to the packet size. More
precisely, b−w + 1 table lookup operations will be required
for a packet of size b bytes, and fingerprint window size w

bytes. This number of memory accesses increases the pro-
cessing complexity and slows down the approximate finger-
printing step to pre-process the packet stream.

One way to reduce the number of table lookups is to slide
the window forward by s bytes (s > 1) instead of 1 byte. By

1Note that bypassing a packet implies that rules are defined
on a per packet basis (e.g., independent of the connection
status), and that patterns do not traverse packet boundaries.
We will address these aspects later in Section 5.

packet payload

1 2 3 4 5 6 ... b

w bytes

fingerprint

fingerprint table

p
2 F(p)

2

p
1 F(p)

1

p
n F(p)

n

... ...

a) general case

packet payload

1 2 3 4 5 6 ... b

w bytes

fingerprint

fingerprint table

*abc F(*abc)

abcd F(abcd)

s bytes

256
entries

b) single fingerprint table

packet payload

1 2 3 4 5 6 ... b

w bytes

fingerprint F fingerprint table

abcd F(abcd)

w-1 bytes

fingerprint table (3 bytes)

abc F'(abc)
fingerprint F'

c) multiple fingerprint table d) unifying table

packet payload

1 2 3 4 5 6 ... b

w-s+1 bytes

fingerprint F

fingerprint table

abc F(abc)

bcd F(bcd)

s bytes

Figure 1: Approximate Fingerprinting

doing so, we reduce the number of table indexing operations
by a factor of s. The number of such operations, L, is given
by:

L =

‰

b − w + 1

s

ı

(1)

The problem with sliding the window forward by s bytes is
that we would not be able to detect those patterns that cross
window boundaries. A solution is then to add extra entries
to the fingerprint table that will report all matches which
contain any sequence of characters (s−1) byte long followed
by the first (w − s + 1) characters of a pattern as a match.
This solution will increase the number of false positives for
all those patterns that do not cross the window boundary.
Indeed, we are trading an increase in the fingerprint table
size and an increase in the false positive rate for a decrease
in the number of fingerprint table lookups.

Figure 1b shows a detailed example with a window size of
4 bytes and the pattern abcd. The window is slid forward
by 2 bytes at each step. At the first step, the fingerprint
is computed on the substring from byte 1 through byte 4.
On the next iteration, the window would move forward by
2 bytes and a new fingerprint would be computed on the
substring between byte 3 and byte 6. We will detect the
presence of abcd in the payload if it starts at byte position 1
or if it starts at byte position 3. We will miss the presence of
abcd in the packet if it is offset by 1 byte at the beginning.
For this reason, we add extra entries to the fingerprint table
denoted by *abc where the * represents a single character
from the alphabet (i.e., we add 256 entries to the fingerprint
table). The amount of memory required for the pattern
table is given by

np · f · (1 + 256s−1), (2)

where np is the total number of original patterns, f is the
size of fingerprint in bytes and s is the window step size in
bytes.

Reducing the memory footprint. Using a single pattern
table as shown in Figure 1b is not very memory efficient.
According to (2), the amount of memory required to store
all the patterns in the table increases exponentially with the
window step size, s. Therefore, this approach is impractical
for window step sizes greater than 2 bytes.

One solution to this problem is to use multiple tables
(see Figure 1c) to store fingerprints of substrings of vary-
ing lengths starting from w bytes down to w− s bytes. The
memory reduction comes from the fact that all the extra

patterns we introduced previously differed in the first s − 1
characters, but were the same for the remaining w − s + 1
characters. Thus, the extra 256s−1 patterns stored in the
single table case described above can be represented by a
single entry in a separate fingerprint tables that contains
shorter patterns. The memory growth is now linear with the
number of patterns and the window step size and therefore
scales well with the increase of the window step size. The
number of extra tables needed is the same as the window
step size s. Note that since Rabin’s fingerprints are com-
puted incrementally, it is trivial to obtain the fingerprint of
the last w − s + 1 bytes when computing a fingerprint for w

bytes.
Consider the same example described previously: window

sizes w of 4 bytes, the window step size s is 2 bytes and we
look for the pattern abcd In the single table case, we would
need an extra 256 entries of the form *abc to be stored in
the pattern table. Now, these are represented in another
pattern table by just the common portion of the string abc.

The steps proceed as follows. A first fingerprint, F , is
computed over the first window and a second fingerprint, F ′,
is computed over the shorter window. The first fingerprint
table is looked up with F . If a match is found, then abcd is
present in the first window (there is a small chance of a false
positive due to collisions in the fingerprint space). If F is
not found in the first fingerprint table, the second fingerprint
table is looked up with F ′. If a match is found, it is reported
as a possible hit. This example is illustrated in Figure 1c.
The amount of memory required for these pattern tables is
np · f · s, where np is the total number of original patterns,
f is the size of fingerprint in bytes and s is the window step
size in bytes.

While the multi-table approach is well suited for a hard-
ware implementation, where multiple small tables can eas-
ily be accessed in parallel, in a software implementation
the multiple sequential memory accesses would significantly
lower performance. Thus, alternatively, the multiple tables
can be compressed into a single, unifying table (see Fig-
ure 1d), by storing only suffixes of length w − s + 1 bytes
(the shortest sub-window) of all the entries in the multiple
fingerprint tables. In our practical example, to detect abcd

would thus mean storing the fingerprints F ′ of strings abc

(from the original ”w− s+1” table) and bcd (suffix of entry
abcd in the w − s + 2 table, as in Figures 1c and 1d). This
solution further reduces the table size and requires only one
fingerprint computation and one lookup, but increases the
possible number of false positive matches and fingerprint
collisions, due to only a portion of the string being matched
and possible overlaps of these shorter substrings.

Total rules 2836
Non-pattern rules 146
Pattern containing rules 2690
content containing rules 1930

Table 1: Snort rule database statistics.

4. EVALUATION
We conduct two experiments to evaluate the performance

of the approximation pattern matching method. The first
experiment models the performance of the preprocessor which
uses the method described in Figure 1c. This configuration
of the preprocessor is ideal for hardware implementation on
an FPGA or network interface card. The evaluation is fo-
cused on three aspects: (i) the memory footprint of the fin-
gerprint tables required to store the patterns; (ii) the num-
ber of table lookups per packet — that varies with the step
size s as given by (1); and (iii) the number of false positives
in the packet trace, i.e. the number of packets unnecessarily
forwarded to the precise pattern matching algorithm.

The second experiment models the performance of the
preprocessor which utilizes the method described in Fig-
ure 1d. This configuration is more suited to a software
implementation on a general purpose processor. The evalu-
ation is focused on two aspects: (i) the time required to pro-
cess a stream of packets with and without the preprocessor;
and (ii) the fraction of the original data that is forwarded
to the precise pattern matching algorithm.

In order to provide a realistic packet stream, we consider
two long packet traces (Trace 1 and Trace 2) with full pay-
loads collected in a residential access network [9]. The site
where the trace was collected represents a user population
estimated in the order of 20,000 with a large number of
services and applications. Trace 1 is 20 minutes long and
contains 19,018,509 packets. Trace 2 is 70 minutes long and
contains 67,875,101 packets.

String Patterns. The set of patterns we search in the pay-
loads are derived from the Snort rules database as of August
25, 2005. The rule statistics for this database are shown in
Figure 1. This table shows that there are 2,690 rules in Snort
which require pattern matching. Payload pattern matching
within Snort is specified by the content, uricontent or the
pcre payload detection rule options. The content option al-
lows to specify an exact matching pattern. The uricontent

option results in a search in the normalized request URI
field. It only works in conjunction with a HTTP preproces-
sor. The pcre option allows to specify a regular expression
over the payload to be sought for. Our system can be placed
in line with any other existing pre-processing that Snort per-
forms today (e.g., HTTP inspection, protocol parsing etc.)
and label all the packets that could potentially trigger a
match. The capability to match on both uricontent and
pcre options exist2. In our study, we consider only those
rules that present the content option (1,930 rules).

The approximate fingerprint method can only be applied
to content patterns that are longer than the window size

2In the current Snort implementation, almost every regular
expression rule carries a content rule and only upon a match
of this string the appropriate regular expression evaluation
is triggered. The actual content string is often a substring
of the pcre regular expression.

0 4 8 12 16 20 24 28 32 36 40 44 48 52
0

0.2

0.4

0.6

0.8

1

content pattern length (bytes)

P
(le

ng
th

 ≥
 x

)

all patterns
max length per rule

Figure 2: Complementary cumulative distribution

of content string lengths

(w) chosen for computing the fingerprint. A large window
size would result in more accurate pattern matching and
a smaller number of false positives. Also, increasing the
window size would enable us to increase the step size (s) and
thus reduce the total number of fingerprint table lookups per
packet.

To find an appropriate value of w we look at the distribu-
tion of the length of the patterns in the Snort ruleset. Fig-
ure 2 shows the complementary cumulative distribution of
content pattern lengths. The dashed line shows the distri-
bution for all patterns, while the solid line shows the length
distribution for the longest pattern in each rule. We can see
that a window size of 4 bytes would cover 90.78% of all rules,
while a size of 8 bytes would cover 58.45% of the rules.

To accommodate rules with patterns shorter than the win-
dow size, a different pre-processing step would be needed. A
combination of a Bloom filter and the approximate finger-
print would be a possible fast single lookup solution, and is a
subject of our ongoing work. Discussion of this technique is
beyond the scope of this article, however, relevant references
indicate that a feasible solution exists [16].

Performance Results. First, we test the configuration
of the pre-processor which is suited for a hardware imple-
mentation (described in Figure 1c). We evaluate the perfor-
mance by running Snort on two traces: the original packet
trace and a “reduced” packet trace that contains all packets
deemed suspicious by our pre-processor. We measure the
run times for Snort on the two traces to get an idea of the
performance gain the pre-processor can provide. Trace 1
was used for this experiment.

Table 2 summarizes our experimental results. We used 16
bit wide fingerprints for window sizes of 4 bytes and 32 bit
wide fingerprints for window sizes of 8 bytes. For w = 4, the
subset of the Snort ruleset we considered contains 1637 rules
and 543 unique patterns. For w = 8, the Snort rule subset
contains 1057 rules and 426 unique patterns. Columns 3,
4 and 5 show the size, processing time and alerts returned
by Snort for the original trace, while columns 6 to 9 show
the same data for the reduced pre-processed trace. The last
column shows the memory footprint of that particular pre-
processor configuration in Kbytes. This number does not
include bookkeeping overhead and represents the amount
of space required to store the fingerprint table alone. In a
real hardware implementation, the number shown in Table

Window Step Full Trace Pre-Processed Trace Memory
(bytes) (bytes) Packets Time (sec.) Alerts Packets % Size Time (sec.) Alerts (kb)

4 1 19,018,509 401.13 147,588 13,735,302 72.22 391.39 147,588 1.06
4 2 19,018,509 401.13 147,588 13,800,174 72.56 390.15 147,588 2.12
4 3 19,018,509 401.13 147,588 14,808,934 77.86 393.50 147,588 3.18
8 1 19,018,509 402.98 136,730 2,072,319 10.9 78.66 136,730 1.66
8 2 19,018,509 402.98 136,730 2,227,783 11.71 83.76 136,730 3.32
8 3 19,018,509 402.98 136,730 2,356,836 12.39 89.59 136,730 4.99
8 4 19,018,509 402.98 136,730 2,623,751 13.8 95.42 136,730 6.65
8 5 19,018,509 402.98 136,730 3,693,761 19.42 137.52 136,730 8.32
8 6 19,018,509 402.98 136,730 7,332,799 38.55 317.02 136,730 9.98

Table 2: Pre-Processor performance for the packet trace ”Trace 1”. This particular design is suited for a

hardware implementation on an FPGA or NIC. The difference in Snort runtimes indicates the performance

gain that can be obtained.

Window Step Snort standalone Snort + preprocessor Memory
(bytes) (bytes) Packets Time (sec.) Alerts Packets Time (sec.) Alerts (kb)

8 1 67,875,101 1683.84 577,388 7,367,837 1458.9 577,234 67.3
8 2 67,875,101 1683.84 577,388 7,890,043 1368.74 577,234 70.5
8 3 67,875,101 1683.84 577,388 9,354,317 1440.63 577,234 73.3

Table 3: Pre-Processor performance when integrated with Snort for the packet trace ”Trace 2”. TCP stream

reassembly is performed by Snort. This design is suited for software implementation on a general purpose

processor.

2 would increase by a few kilobytes depending on the hash
table scheme used to access the table.

The tradeoffs involved in varying w and s can be seen
in Table 2. For a window size of 4 bytes, the size of the
pre-processed trace is almost 75% that of the original trace.
This is due to the inclusion of a large number of packets as
false positives and is mainly caused by the collisions in the
fingerprint space (just 16 bit wide). Increasing the step size
s for this window size results in a very small increase in the
size of the pre-processed trace. This is caused by another
small increase in the number of false positives due to the
fact that we move the window forward by more than one
byte. In general, increasing the step size s, results in: (i)
increasing the memory footprint for the pre-processor, (ii)
reducing the per packet table lookups (see Equation 1), and
(iii) increasing the number of false positives generated by
the pre-processor. An increase in the number of false pos-
itives results in an increase in the size of the pre-processed
trace. For a window size of 8 bytes, false positives due to
collisions in the fingerprint space are no longer dominant (32
bit wide fingerprints) and the effects of varying the step size
are more pronounced in this case.

In general, desirable configurations of the pre-processor
should have a low memory footprint, generate a low num-
ber of false positives (i.e. the size of the pre-processed
trace should be small), and have a reduced number of table
lookups per packet. Setting w to 8 and s to a value between
2 and 5 provides these characteristics. On the average, the
size of the pre-processed trace is between 10% to 20% of
the original trace which translates in a corresponding im-
provement in the runtime of Snort. Note that the number
of alerts returned by processing the full and reduced traces
are the same for all cases.

The second experiment evaluates the configuration of the
preprocessor when implemented in software on a general
purpose processor. In order to measure processing time, the

approximate pattern matching technique described in Fig-
ure 1d is implemented as a Snort preprocessor. The number
of packets processed by Snort and the time required to pro-
cess these packets are measured while executing Snort with
and without the preprocessor.

Table 3 summarizes the results of this experiment. Snort
was run with TCP stream reassembly enabled so that pat-
terns are searched for in individual packets as well as re-
assembled stream buffers. Window size w was set at 8 bytes,
32 bit fingerprints were used, and step size s was varied from
1 byte to 3 bytes. When Snort is run with the preprocessor,
the amount of packets processed varies from 10% to 14% of
the total number of packets in Trace 2. This translates to
a 14% to 19% improvement in the runtime of Snort when
the preprocessor is enabled. The performance gain is lim-
ited given that in this software solution, the processing time
is inherently dominated by moving the packets to and from
memory.

Column 9 shows the memory footprint of the preproces-
sor configuration and includes the overhead for storing the
hash table unlike the memory footprint shown in Table 2.
A hash table with 16,384 entries is used. The top level of
the hash table contains pointers to bucket chains. This hash
table organization offers an ideal tradeoff between speed of
hash function computation/table lookup and memory foot-
print. In comparison, the Snort data structure for the Aho-
Corasick pattern matching algorithm requires 57.02 MBytes
for the same set of patterns that the preprocessor takes as
input.

In Table 3, a point of diminishing return is reached when
the step size s is increased to 3 bytes. This value causes an
increase in the runtime of Snort when compared to a prepro-
cessor with step size 2 bytes. This is due to the increase in
the number of packets that the preprocessor sends to Snort
(column 6 in Table 3). This is a direct effect of an increase
in the false positive rate caused by incrementing the step

size from 2 bytes to 3 bytes. This effect can also be seen
in Table 2. The number of alerts returned by Snort when
run with and without the preprocessor (shown in column 5
and column 8) differ. This is a side effect of the way that
Snort reports alerts for a reassembled stream which causes
multiple duplicated alerts to be raised for each packet that
belongs to the stream.

The results in Table 3 show that the processing cost of the
preprocessor is not prohibitively large for a software imple-
mentation. A hardware implementation can further improve
performance by exploiting parallelism during fingerprint ta-
ble lookups. The fingerprint approach is computationally
lightweight and successive fingerprints over a sliding win-
dow can be incrementally computed in constant time using
the technique presented in [8]. Considering all these factors
into account, we argue that a hardware implementation of
the preprocessor can process data at high line rates in real
time.

5. DISCUSSION AND FUTURE WORK
We have presented a method to accelerate pattern match-

ing using approximate fingerprints. Our preliminary results
show the feasibility of this approach, which can significantly
reduce the load on precise pattern matching methods used
in current network intrusion detection systems. The ap-
proach has two other favorable properties: an extremely
small memory footprint and low number of memory accesses
per packet. This enables a potential hardware implementa-
tion of the method, necessary for high-speed links.

This first study of approximate fingerprinting has raised
several issues that are currently under investigation. Our
results indicate a fingerprint window size of 8 bytes to be the
most appropriate in terms of number of memory accesses,
as well as to reduce the number of false positives. Although
this does not cover all the rules present in Snort, relevant
literature and our ongoing work indicate that a single-lookup
solution for the short patterns is feasible and could well be
integrated with the approximate fingerprinting solution.

Finally, a fundamental advantage of a fingerprint-based
solution is the ability to indicate candidate matches (as op-
posed to e.g. a Bloom filter). This is a yet-unexplored aspect
of our solution. The candidate match may indicate to Snort
at what offset to start the precise pattern matching algo-
rithm, and what patterns to focus on. It may also facilitate
other pattern matching applications, such as rapid worm
detection, by gathering approximate statistics of frequent
content blocks.

6. REFERENCES
[1] A. V. Aho and M. J. Corasick. Efficient string

matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340, June
1975.

[2] K. Anagnostakis, E. Markatos, S. Antonatos, and
M. Poluchronakis. E2xB: A domain-specific string
matching algorithm for intrusion detection. In
Proceedings of IFIP Information Security Conference,
May 2003.

[3] H. Bos and K. Huang. Towards software-based
signature detection for intrusion prevention on the
network card. In Proceedings of Symposium on Recent
Advances in Intrusion Detection, Sept. 2005.

[4] B. Commentz-Walter. A string matching algorithm
fast on the average. In Proceedings of ICALP, pages
118–132, July 1979.

[5] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and
J. Lockwood. Deep packet inspection using parallel
bloom filters. In Proceedings of Symposium on High
Performance Interconnects (HotI), pages 44–51, Aug.
2003.

[6] S. Dharmapurikar and J. Lockwood. Fast and scalable
pattern matching for content filtering. In Proceedings
of ANCS, Oct. 2005.

[7] H.-A. Kim and B. Karp. Autograph: Toward
automated, distributed worm signature detection. In
Proceedings of Usenix Security, Aug. 2004.

[8] U. Manber. Finding similar files in a large file system.
In Proceedings of Usenix Conference, 1994.

[9] A. Moore, J. Hall, E. Harris, C. Kreibech, and
I. Pratt. Architecture of a network monitor. In
Proceedings of Passive and Active Measurement
Workshop, Apr. 2003.

[10] J. Newsome, B. Karp, and D. Song. Polygraph:
Automatically generating signatures for polymorphic
worms. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2005.

[11] V. Paxson. Bro: A system for detecting network
intruders in real-time. Computer Networks, 31, 1999.

[12] M. Rabin. Fingerprinting by random polynomials.
Technical Report TR-15-81, Harvard University,
Department of Computer Science, 1981.

[13] M. Roesch. Snort: Lightweigth intrusion detection. In
Proceedings of Usenix LISA, Nov. 1999.

[14] S. Singh, C. Estan, G. Varghese, and S. Savage.
Automated worm fingerprinting. In OSDI, Dec. 2004.

[15] R. Sommer and V. Paxson. Enhancing byte-level
network intrusion detection signatures with context.
In Proceedings of the 10th ACM Conference on
Computer and Communications Security, 2003.

[16] H. Song, T. Sproull, M. Attig, and J. Lockwood. Snort
offloader: A reconfigurable hardware NIDS filter. In
Proceedings of 15th International Conference on Field
Programmable Logic and Applications (FPL),
Tampere, Finland, Aug. 2005.

[17] N. Spring and D. Wetherall. A protocol-independent
technique for eliminating redundant network traffic. In
Proceedings of ACM SIGCOMM, 2000.

[18] Y. Sugawara, M. Inaba, and K. Hiraki. Over 10 Gbps
string matching mechanisms for multi-stream packet
scanning systems. In Proceedings of Field
Programmable Logic and Application, Apr. 2004.

[19] L. Tan and T. Sherwood. A high throughput string
matching architecture for intrusion detection and
prevention. In Proceedings of the International
Symposium on Computer Architecture, June 2005.

[20] N. Tuck, T. Sherwood, B. Calder, and G. Varghese.
Deterministic memory-efficient string matching
algorithms for intrusion detection. In Proceedings of
IEEE Infocom, Mar. 2004.

[21] S. Wu and U. Manber. Agrep – a fast approximate
pattern-matching tool. In Proceedings of Usenix
Conference, pages 153–162, 1992.

