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Abstract
Confronted with the generalization of monitoring in

operational networks, researchers have proposed place-
ment algorithms that can help ISPs deploy their monitor-
ing infrastructure in a cost effective way, while maximiz-
ing the benefits of their infrastructure.

However, a static placement of monitors cannot be op-
timal given the short-term and long-term variations in
traffic due to re-routing events, anomalies and the nor-
mal network evolution. In addition, most ISPs already
deploy router embedded monitoring functionalities. De-
spite some limitations (inherent to being part of a router),
these monitoring tools give greater visibility on the net-
work traffic but raise the question on how to configure a
network-wide monitoring infrastructure that may contain
hundreds of monitoring points.

Therefore, we reformulate the placement problem as
follows: Given a network where all links can be mon-
itored, which monitors should be activated and which
sampling rate should be set on these monitors in order
to achieve a given measurement task with high accuracy
and low resource consumption? We provide a formula-
tion of the problem, an optimal algorithm to solve it, and
we study its feasibility and performance on a real back-
bone network.

1 Introduction
Network operators perform traffic measurements as part
of their day by day network management activities that
include traffic engineering, anomaly detection, account-
ing and capacity planning. There exist several ways to
perform traffic measurements. Some involve router sup-
port (e.g., SNMP counters, Netflow [4]), while others re-
quire additional equipment to be installed in the network
to perform passive or active measurements.

The various solutions present a trade-off between the
accuracy of the measurement and the amount of comput-
ing resources they require. SNMP counters, for example,
represent a very low cost solution (in terms of router pro-
cessing resources) but give the operator only a rough idea
on the traffic that is traversing the network. The aggre-
gate counters are of little use to operators interested in

users’ perceived performance [16] or in estimating net-
work traffic demands [20]. At the other extreme, passive
monitoring equipment, that captures every packet on a
link, allows extremely accurate measurements, but scales
very poorly for large networks, given the high unit cost
for deployment and maintenance. In addition, space and
power constraints may prevent operators from deploying
this equipment where it would be the most useful, while,
once deployed, routing or network changes may render
it useless.

The solution that many network operators have
adopted is then to use Netflow [4] or similar solu-
tions [23, 19]. NetFlow allows a ubiquitous deploy-
ment of traffic monitors and provides a detailed enough
view of the traffic streams. Netflow is today widely
used by Internet Service Providers (ISPs) and several
tools exist to process, analyze and visualize NetFlow
data [9, 24]. However, enabling NetFlow can have an
impact on packet forwarding performance. To address
this problem, router vendors have introduced versions of
Netflow that sample the incoming packets and update the
flow information only with sampled packets.

Network operators then face two options:(i) enable
Netflow on all routers but using very low sampling rates
to minimize potential network impact, or,(ii), enable
Netflow on a chosen set of routers where the sampling
rates are set depending on the measurement task and the
target accuracy.

Currently the first option is the one followed by ISPs
because no automated method exists for the second. This
work aims at filling this gap.

The contributions of the paper are threefold. First, we
define a general framework to approach the problem of
sampling traffic data in large IP networks. Our frame-
work allows to combine and solve in one step the selec-
tion of traffic monitors and the setting of the sampling
rates for each monitor. We show how this framework can
be applied to a general class of measurement tasks. Sec-
ond, we provide an optimal algorithm to solve the sam-
pling and placement problem. We validate the algorithm
using network data collected from the GEANT’s back-
bone network [10]. Finally, we discuss how to deploy
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our solution in a real backbone network and introduce
additional methods that allow to adapt the sampling rates
to changes in the traffic due to time-of-day effects, fail-
ures or anomalies.

The paper is organized as follows. In Section 2, we
describe the objectives and challenges of this work. Sec-
tion 3 presents related work. Sections 4 and 5 formally
define the problem and our approach to solve it. Sec-
tion 6 evaluates the performance of our algorithm in the
GEANT backbone network. Section 7 describes how to
deploy our solution in a real backbone and how to deal
with traffic changes when the measurement task runs in
a continuous fashion. Section 8 concludes the paper.

2 Objectives and Challenges
The nature of the measurement task has a clear impact on
the choice of traffic monitors to be used. For example, in
order to estimate the traffic demands, a network operator
would ideally monitor all ingress links in the network or
at least all peering links [8]. However, when the network
operators want to focus on an individual network prefix
or Autonomous System (AS), they may require a very
different layout of monitors in the network.

Very often, network operators do not have prior
knowledge of the measurement tasks the monitoring in-
frastructure will have to perform. This is particularly
true with security applications. For example, a specific
network prefix that is “below the radars” for traffic engi-
neering purposes may play an important role in the early
detection of anomalies.

Furthermore, network traffic demands are subject to
short term variations due to failures and other anomalous
events as well as longer term variations due to the addi-
tion of new customers, peering links, Points of Presence,
etc. These changes quickly make a static placement of
traffic monitors perform sub-optimally.

For these reasons, Internet Service Providers (ISP)
privilege widespread monitoring infrastructures that pro-
vide visibility over the entire network. Netflow [4] is a
perfect example of such monitoring system. Embedded
into the routers, it maintains a list of flow records that
describe the traffic forwarded by the router. The flow
records are then exported to a collector for analysis and
storage. Netflow has become today the de-facto stan-
dard of flow monitoring solutions: it is the most widely
deployed and various router manufactures support com-
patible monitoring applications [19]. A standardization
effort is also in progress at the IETF [15].

ISPs configure Netflow on all routers to the same
“safe” sampling rate — router vendors usually recom-
mend a value of 1/1000 packets — while little attention
is paid to the accuracy of the results. Low sampling rates
reduce the stress on the routers but introduce large errors
in the measurement.

Clearly, this approach leads to an inefficient use of the
resources both in the routers and in the collector, and to a
less than desirable measurement accuracy. Our objective
is to find a method that, given a measurement task and a
target measurement accuracy, has the following proper-
ties:
• It selects the monitors that need to participate in the

measurement. This reduces the processing overhead on
the collector side where it is desirable that a large pro-
portion of the records received, processed and stored are
actually relevant to the measurement task.
• It provides a set of sampling rates for the active mon-

itors to guarantee an optimal use of the resources while
making sure that the sampling rates are low enough to
not be a concern for the operator.
• The resource consumption, as measured by the total

number of sampled and processed packets, is minimal
and adapts to the changes in the traffic. The objective
is to maintain the overall resource consumption stable
while keeping the accuracy close to target.
• The method requires a minimal amount of configura-

tion from the network operator and is robust to incorrect
input parameters.

In addition, our method should support a general class
of monitoring applications and be easily adapted to new
measurement tasks. We choose one example of such
tasks to illustrate the contributions of this paper. We
find the sampling rates to estimate the amount of traffic
flowing among a set of origin-destination pairs selected
by the network operator. In our terminology, origin and
destination could refer to any combinations of end-hosts,
network prefixes, Autonomous Systems, etc. We have
chosen this task because it helps in illustrating our con-
tribution and it is, at the same time, a canonical measure-
ment task for classical traffic engineering, security and
accounting applications.

3 Related work
Identifying the strategic locations for traffic monitors is
a hard problem that has attracted significant interest in
the literature. Several solutions have been proposed for
different contexts. For example, in [17], the authors fo-
cus on the placement of measurement devices for active
monitoring (more specifically for the construction of dis-
tance maps). Others have addressed the placement prob-
lem in an active monitoring infrastructure to measure de-
lays and detect link failures [1, 13, 21].

In the passive monitoring domain, Suh et al. [28] ad-
dress the problem of placing monitors and set their sam-
pling rates in order to maximize the fraction of IP flows
being sampled. They propose a two phase approach
where they first find the links that should be monitored
and then run a second optimization algorithm to set the
sampling rates. Their approach bears some similarities
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with our work, but the analysis is limited to a generic
monitoring goal (maximize the overall sampled traffic)
and only considers a static placement of monitors. Their
formulation leads to a set of heuristics that find near-
optimal solutions. Our approach, instead, allows to in-
dicate whether a solution corresponds to the global opti-
mum.

Many researchers have also explored ways to improve
NetFlow to automate some of the features and help net-
work operators configure the routers. Estan et al. [7] pro-
pose a set of techniques to let a router running NetFlow
adapt the sampling rate in order to keep a fixed resource
consumption. The adaptation is a local and independent
decision of the router, and is not tied to any measurement
objective. Our work is complementary to [7] in the sense
that it provides a global sampling strategy for a specific
monitoring goal. The individual routers could then apply
local decisions in order to minimize their memory usage.

There is a large body of literature that addresses the
problem of inversion of traffic properties from sampled
traffic [6, 5, 12]. Duffield et al. [6] show that periodic
and random sampling provide roughly the same result on
high speed links. Random sampling can thus be used in
the mathematical analysis for its appealing features.

Traffic matrix estimation techniques (e.g., [20, 29,
26]) address a measurement task similar to the one we
are considering as example. However, the focus in those
works is the inference of the traffic matrix from partial in-
formation (e.g., link loads). Indeed, they often use sam-
pled Netflow data to validate their methods.

4 Problem Formulation
In this section we formalize the placement problem. Our
approach to solve it will be described in the next section.

We represent the network by a directed graphG(V, E)
whereV corresponds to the set of nodes andE is the set
of edges. The traffic load on edgee ∈ E is denoted byUe.
The routing of each origin-destination pair (OD pair) is
specified by the routing matrixR, whose entriesri,j = 1
if the OD pairi traverses edgej and0 otherwise.

The measurement tasks are defined over a setF =
{1, 2, . . . , F} of OD pairs. We indicate the subset of
links traversed by the OD pairs inF by L ⊆ E . The
optimization framework we propose in this paper is gen-
eral and can be applied to any definition of node (e.g.,
end-host, network prefix, Autonomous System, etc.).

The quality of a measurement for an OD pairk ∈ F is
computed via a utility functionM : R+ → R+, whose
argumentρk is the effectivesampling rate of OD pair
k ∈ F , defined as the probability that a packet of the
kth OD pair is sampled at least once by at least one mon-
itor deployed in the network. Note that this definition
assumes that we have means to discern whether the same
packet is sampled at multiple locations in the network. In

Section 6, we will address this aspect of the monitoring
infrastructure in more detail. Assuming that the packets
are sampled in an i.i.d. (independent and identically dis-
tributed) fashion at each monitor, withpi denoting the
packet sampling probability of the monitor deployed on
link i, and that the sampling processes of different mon-
itors are statistically independent, we have that

ρk = 1−
∏

i∈L
(1− pi)rk,i . (1)

Clearly, the larger the effective sampling rate, the more
information it brings. However, the marginal rate of in-
formation is usually smaller for large values ofρk than
for small values. These two observations lead us to rea-
sonably assume thatM(ρk) is an increasing and strictly
concave function ofρk.

Our objective is to choose the vector of sampling rates
p = (pi)i∈L that maximizes

∑

k∈F
M (ρk (p)) , (2)

under the constraints

pi ≥ 0 for all i ∈ L (3)

pi ≤ αi for all i ∈ L (4)∑

i∈L
piUi ≤ θ, (5)

whereθ is thecapacityof the system, defined as the max-
imum total number of packets that can be sampled in the
entire network, andαi represents the maximum sampling
rate that can be applied to the individual linki.

All constraints are linear and therefore define a convex
solution spaceΩ defined by{p | ∑i∈L piUi ≤ θ, 0 ≤
pi ≤ αi ∀i ∈ L}. As the utility functionM is strictly
concave, the optimization problem, given by (2), (4) and
(5), has a unique maximizer, that we denotep∗ (see e.g.,
[3, Chapter 2]).

Note that an alternative objective could be
to maximize the minimum of the utilities, i.e.,
mink∈FM(ρk(p)). The two formulations have
their advantages and limitations. Maximizing the sum of
utilities gives us more flexibility in setting the sampling
rates. Indeed, we can compensate the poor accuracy
of one OD pair increasing the accuracy of another.
We will discuss the implications of this in greater
detail in Section 6. On the other hand, maximizing
the minimum utility may lead to increase significantly
the sampling rate on those links that carry small OD
pairs. Furthermore, the minimum of the utilities is not a
differentiable function over the whole parameter space
and this may impact the convergence of the algorithm
(see Section 5.4). We leave the study of alternative
objective functions for future work.
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5 Method
In this section we first reformulate the optimization prob-
lem using Lagrange multipliers. Second, we introduce
and comment on the assumptions that simplify the com-
putation of the optimal solution. Third, we discuss the
choice of a suitable utility functionM(·). Last, we
briefly present the algorithm used to solve the optimiza-
tion problem and discuss its advantages and pitfalls.

5.1 Our approach
The most common approach to solve a constrained opti-
mization problem, such as the one in (2), (3), (4) and (5),
is to define the corresponding Lagrangian:

L(p, λ, µ, ν) =
∑

k∈F
M (ρk(p))− λ

(∑

i∈L
piUi − θ

)

−
∑

i∈L
µi(pi − αi) +

∑

i∈L
νipi, (6)

where(λ, µ,ν) = (λ, µi, νi)i∈L is the set of Lagrange
multipliers. Each Lagrange multiplier enforces the satis-
faction of one of the constraints (3), (4) and (5) with an
equality sign. A constraint met with an equality sign is
called anactive constraint. For example, ifpi = αi, then
the ith constraint (4) is active, whereas ifpi < αi, it is
inactive.

In order to find the unique maximizerp∗, we can solve
the system of equations provided by the Karush-Kuhn-
Tucker (KKT) conditions. As the solution space is a
convex hull and the objective function is concave, the
KKT conditions are sufficient for optimality (see e.g., [3,
Chapter 5.5]). The difficulty in using the KKT condi-
tions to solve the problem given by (2), (3), (4) and (5)
is that it requires to know the set of active and inactive
constraints in advance, which is not possible. Therefore,
we need to rely on an iterative procedure, such as a gradi-
ent projection method to explore the solution space. Our
approach to find the optimal solutionp∗ is given in more
details further below.

5.2 Assumptions
Let us recall the assumptions made so far: the utility
functionM is strictly increasing and concave; each mon-
itor sampling process is i.i.d. and is statistically indepen-
dent from the sampling process of the other monitors.

From a practical perspective, we expect to obtain sam-
pling rates that are in the order of 0.01 and lower. More-
over, we rarely expect to have more than one or two mon-
itors observing the traffic of the same OD pair. This al-
lows us to approximate the effective sampling rate (1) by

ρk =
∑

i∈L
rk,ipi. (7)

Next, we force the constraint (5) to be met with an
equality sign. This assumption is pretty straightforward
to make, as there is no practical interest not to use all the
provided resources. Hence (5) becomes

∑

i∈L
piUi = θ. (8)

5.3 Choosing the utility function
The choice of the utility functionM(ρk) is dictated by
the following conditions. First, the utility function has
to quantify the information provided by the measure-
ment for each OD-flow inF . Second, the function has
to comply with the requirements set by the optimization
framework: as mentioned earlier, it is strictly increasing
and concave. Without loss of generality, we assume that
M(0) = 0, i.e. that the utility is zero if no packet is sam-
pled at all. Third, the functionM must be easy to use
in our optimization algorithm. This requires the function
to be twice continuously differentiable. We next derive
a possible function which combines the above specified
properties.

A first straightforward choice for the utility function
M is to use the relative error between the actual met-
ric of interest that we want to measure (in the present
case, the flow size) and its value estimated from the sam-
pled packets. LetSk be the actual size of thekth OD
pair (number of packets of thekth OD pair) in a given
time interval, andXk be the number of sampled packets
from this OD pair in the same time interval. Because of
the assumptions that the sampling processes at different
monitors are independent and that packets are sampled
at most once, the distribution ofXk conditionally toSk

is binomial with parameters(Sk, ρk). In this paper, we
consider the squared relative error (SRE) between the es-
timated sizeXk/ρk and the actual size of the flowSk, i.e.

SRE=
(

Xk/ρk − Sk

Sk

)2

, (9)

whose expected value is

E[SRE](ρk) =
∫ ∞

0

1− ρk

ρks
dP(Sk ≤ s)

= E
[

1
Sk

] (
1
ρk
− 1

)
. (10)

Define A(ρk) = 1 − E[SRE](ρk), that we call the
mean squared relative accuracy. A possible candidate for
M(ρk) would be to take it equal toA(ρk), since it is a
strictly increasing, concave function ofρk. However, this
function is not yet adequate to be used as utility function
M . The problem is that the functionA(ρk) is not defined
at the origin. This is required, as we expect to get zero
utility for zero sampling. To fix this problem, we divide
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Figure 1: The utility functionM with respect to the ef-
fective sampling rateρk. The utility function is defined
over the interval [0,1], such as given in (11).

the interval[0, 1] in two intervals[0, x0] and[x0, 1]. We
takeM(ρk) = 1 − E[SRE](ρk) if x0 ≤ ρk ≤ 1 and
M(ρk) = A′(ρk) for 0 ≤ ρk < x0, whereA′ is defined
in such a way that it is strictly concave and increasing
and twice differentiable over[0, x0], with A′(0) = 0,
A′(x0) = A(x0), ∂A′(x0)/∂ρk = ∂A(x0)/∂ρk and
∂2A′(x0)/∂ρ2

k = ∂2A(x0)/∂ρ2
k. A function that com-

plies with these requirements is the quadratic expansion
of A(ρk) atx0, that reads

A′(ρk) = A(x0)+(ρk−x0)
∂A

∂x
(x0)+

(ρk − x0)2

2
∂2A

∂x2
(x0),

wherex0 is given by the relationA′(0) = 0, that is,

A(x0)− x0
∂A

∂x
(x0) +

x2
0

2
∂2A

∂x2
(x0) = 0.

To summarize, we define the utility functionM as

M(ρk) =
{

A′(ρk) if 0 ≤ ρk ≤ x0

A(ρk) if x0 ≤ ρk ≤ 1.
(11)

We plot the functionM(ρk) for E[1/Sk] = 0.002 and
for E[1/Sk] = 0.0002 in Figure 1. We emphasize that
this manipulation on the function has the sole purpose of
making it suitable for our optimization framework. The
interval 0 ≤ ρk < x0, on which we use the quadratic
expansionA′(ρk), is of little practical interest because
it corresponds to low values of utility. Hence, we expect
that this necessary manipulation does not affect much the
optimization results. We will validate this observation in
Section 6.

5.4 The algorithm
We solve our optimization problem by use of the gradient
projection method for constrained optimization (Refer to
[11, Chapter 5]). At each iteration stepn, this method

consists in projecting first the gradient of the objective
function onto the subspace spanned by the active con-
straints (that is, the set of pointsp that satisfy the active
constraints). This projected gradient gives the search di-
rections(n), along which the current feasible solution
p(n) is moved until either the objective function is max-
imized along this line or an inactive constraint is hit. In
the latter case, this inactive constraint has to be activated
and incorporated into the next computation of the gra-
dient projection. In the former case, the maximization
of the objective function alongs(n) reduces to a one-
dimensional search. We choose Newton’s method (re-
fer to [3], chapter 9.5) to perform this search. Newton’s
method shows fast convergence but requires the objective
function to be twice continuously differentiable. Once
the new solutionp(n + 1) that maximizes the objective
alongs(n) is found, a new search directions(n + 1) has
to be computed. The new search direction will be or-
thogonal to the previous one. The successive search di-
rectionss(n), s(n + 1), . . . form therefore a zigzag path
in the subspace spanned by the active constraints, which
may result in a poor convergence depending on the shape
of this subspace. A better approach is to add, with some
weighting factor, the previous search direction to the new
one. This weighting factor is usually chosen according
the Polak-Ribiere rule. More details can be found e.g.
in [18].

Figure 2 visualizes the steps performed by the gradi-
ent projection method. We start our search with a fea-
sible solutionp(0) arbitrarily chosen on the plane de-
fined by the active constraints (5). We then follow the
search directions(0), that coincides with the projection
of the gradient of the objective function (2) on the sub-
space spanned by the active constraints, until we hit the
constraintp1 ≥ 0. This forces us to activate this con-
straint, i.e. to setp1 = 0, and to recompute next the
search directions(1). With Newton’s method we finally
find p(2).

We mentioned earlier that in order to find the opti-
mal solution, we eventually have to know the set of ac-
tive and inactive constraints of our optimization problem.
That is, we have to know which monitorsi are going to
be used (whose corresponding constraintpi > 0 is in-
active) and which ones not (whose corresponding con-
straintpi = 0 is active). This combinatorial explosion
is unavoidable as the monitor placement problem is NP-
hard. Probing each possible combination is not feasible
in practice, hence we use the above introduced gradient
method to find iteratively the optimum. However, we
do not have any guarantee that the gradient projection
method always converges to the optimum. It might well
happen that the projection of the gradients converges
to a zero vector at some point, sayp′, which forces us
to stop the search, even thoughp′ is not optimal. This
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Figure 2: Visualization of the iterative search procedure
followed by the gradient projection method. The sub-
space spanned by the active constraints is shown in grey.

means that the algorithm has not generated the optimal
set of active and inactive constraints, and thus that some
monitors are turned on/off on suboptimal links. Given
the feasible solutionp′ we have obtained, we apply the
Karush-Kuhn-Tucker (KKT) conditions [11, Chapter 5]
that determine whether this solution is optimal or not. To
do so, we have to compute the Lagrange multipliers de-
fined in (6). Having some of them negative indicates that
the algorithm cannot converge to the optimum with the
current set of active constraints. It may be possible to
continue the search by removing (making inactive) some
of the currently active constraints.

A strategy is to remove (make inactive) the subset
of active constraints associated with negative Lagrange
multipliers (a similar strategy is given in [11, Chapter
5]). After this operation, we recompute the gradient pro-
jection on the subspace spanned by thenewset of active
constraints and proceed with the search. We continue
until we either reach a point that satisfies the KKT con-
ditions and therefore is the optimal solution by KKT’s
theorem, or we abort the search because the number of
iterations (a new iteration starts each time a new search
direction has to be computed) exceeds a threshold we set
on the maximum number of iterations. In our experi-
ments described in Section 6 and 7, this threshold is set
to 2000 to keep the execution time of the algorithm in the
order of few seconds. We observe that in 98.6 percent of
cases the optimum is found in less than 2000 iterations.

The performance of the gradient projection method
can also be measured by the number of times we end
up in the situation where we have to remove (make inac-
tive) the active constraints associated with negative La-
grange multipliers. To provide a number, we conducted
200 independent executions of the algorithm, each time
with a different set of input parameters (different OD pair
sizes, different link loads, different capacityθ). The in-

put parameters are given from the data set discussed in
Section 6. Even though we cannot have a formal upper
bound on the number of times we have to remove some
active constraints, we observe an average of 1.64 situa-
tions per execution of the algorithm, where we have to
remove (make inactive) the constraints associated with
negative Lagrange multipliers, with a standard deviation
of 1.17. These low numbers, that are specific to the mon-
itoring problem we solve, justify our choice of the gradi-
ent projection method to solve efficiently our optimiza-
tion problem.

6 Evaluation
We study the performance of our method by defining and
simulating a measurement task on GEANT, the European
Research network [10]. Our goal is to verify the follow-
ing properties of the solution we obtain with the method
described in Section 5:(i) the sampling rates are low and
validate the approximation in (7);(ii) the solution results
in a fair allocation of resources to each OD pair;(iii) the
solution is clearly superior to other solutions that could
be derived without running any optimization algorithm.

6.1 Data
We use sampled Netflow data collected on all interfaces
of GEANT network (Figure 3). The links have varying
speeds from OC-3 (155 Mbps) to OC-48 (2.5 Gbps). We
also collect in a continuous fashion BGP and ISIS up-
dates.

Every GEANT router has NetFlow-compatible moni-
toring capabilities [19] enabled with a sampling rate of
1/1000. The packets are classified by the 5-tuple (source
and destination IP address, source and destination port
number and protocol number) and the flow records are
exported every minute by the routers. Each record con-
tains the following information (in addition to the 5-
tuple) that is relevant to this study:(i) Flow start and end
time. The start time is the timestamp of the first sampled
packet of the flow. The end time is the timestamp of the
last packet of the flow. Flow termination is triggered ei-
ther by a FIN packet or by an idle timeout (set to 30 sec-
onds). (ii) Sampled packets and bytes. The total num-
ber of sampled packets in the flow and their cumulative
size in bytes.(iii) Source and Destination Autonomous
System (AS). The AS numbers to which the source and
destination IP addresses belong.(iv) Input and output
interface. The index of the router interface on which the
flow was received and sent.

Before using NetFlow data, we need to perform some
additional post-processing of the records. First, we ag-
gregate all flow records (exported by the routers every
minute for all active flows) in 5 minutes bins according
to their start time. We choose 5 minutes as our mea-
surement interval to reduce the impact of synchroniza-
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Figure 3: GEANT Backbone network. The nodes are labelled by their country code. The links are associated a link id
i and the ISIS metric in parenthesis.

tion issues that could have arisen when collecting flow
data from different routers. Then, we adjust the sampled
packet and byte count by multiplying them by the inverse
of the sampling rate (1000 in our case).

Henceforth, we consider the post-processed NetFlow
data to represent theactual traffictraversing the GEANT
network. Our experiments then consists in simulating a
sampling process with the rates set by the optimal algo-
rithm and comparing the results with the post-processed
data. Although our validation does not depend on a per-
fect reconstruction of the traffic dynamics, the sampled
Netflow data present a potential bias against small flows
that can affect the relative contribution of each OD pair
of interest. Unfortunately, this is the only type of data
available today for research and we are not aware of any
other public dataset that contains full unsampled infor-
mation for a network of the size of GEANT.

6.2 Results
For the evaluation we choose to estimate the traffic sent
by JANET (UK Research Network, AS number 786) to
each individual GEANT PoP through the UK PoP.

This task gives us a setF of 20 OD pairs. The
OD pairs traverse 22 of the 72 unidirectional links of
GEANT. We use flow data from November 22nd, 2004
where we associate to each flow record the egress PoP,
computed from the destination IP address using the tech-
nique presented in [8]. The first two columns of Ta-
ble 1 present a summary of the OD pairs and their sizes
in packets/sec. The results in this section are computed
over a single measurement interval. We study the perfor-
mance over multiple measurement intervals in Section 7.

This task shows that the method operates on OD pairs
where origins (i.e., the JANET AS) and destinations (i.e,
all the GEANT PoPs) are of a different nature. In addi-
tion, the OD pair sizes cover the entire spectrum: JANET

to Netherlands (NL) consist of more than 30,000 pack-
ets/sec while JANET to Luxembourg is made of a mere
20 packets/sec. As it will become clear later, this is one
of the main strengths of the method, i.e., the ability to
track indifferently small and large OD pairs.

The remaining columns in Table 1 represent the sam-
pling rates that the optimal solution provides. For each
link i, we indicate the sampling ratepi and the OD pairs
that traverse (and are sampled on) that link. All links
that are not present in the table havepi = 0, i.e., those
monitors do not need to participate in the measurement
task. Finally, the last two rows of the table show the load
in packets/sec on the links and the relative contribution
to the total capacity. In this experiment we have cho-
sen a value ofθ = 100, 000, that is, at most100, 000
packets can be sampled in each 5 minutes measurement
interval in the entire network. We also setαi = 1 for all
links, i.e., we do not define an upper limit for the sam-
pling rates. Thus, we assume the operator has no prior
knowledge of the network traffic.

We can immediately observe that the sampling rates
are extremely low on most links even if no upper limit
was set. Only two links (FR-LU and CZ-SK) need a sam-
pling rates somewhat higher (around 0.9%), but they are
lightly loaded links needed to accurately estimate the two
smallest OD pairs (JANET-SK and JANET-LU). Further-
more, the low sampling rates we obtain and the fact that
each OD pair is sampled in at most two links validate
the assumptions on the effective sampling rate made in
Section 5.2.

The last two columns in Table 1 show the value of the
utility function (11) and the accuracy of the measure-
ment. We define the accuracy of an OD pair size as 1
minus the absolute relative error:1− | x/ρ − s | /s,
wheres is the actual size of the OD pair,x is the sam-
pled size andρ is the effective sampling rate as in (7).

7



OD pair pkt/s p5 p7 p8 p9 p17 p30 p31 p33 p2 p28 Avg
UK-FR UK-SE UK-NL UK-NY SE-PL UK-PT IT-IL FR-BE FR-LU CZ-SK Utility Accuracy

JANET-NL 30123 - - 0.0016 - - - - - - - 0.9999 0.993
JANET-NY 9387 - - - 0.0002 - - - - - - 0.9982 0.965
JANET-DE 4300 - - 0.0016 - - - - - - - 0.9995 0.982
JANET-SE 4080 - 0.0003 - - - - - - - - 0.9973 0.960
JANET-CH 4033 0.0013 - - - - - - - - - 0.9994 0.979
JANET-FR 1723 0.0013 - - - - - - - - - 0.9985 0.969
JANET-PL 1400 - 0.0003 - - 0.0003 - - - - - 0.9960 0.950
JANET-GR 1080 - - 0.0016 - - - - - - - 0.9981 0.964
JANET-ES 1003 0.0013 - - - - - - - - - 0.9974 0.959
JANET-SI 913 - - 0.0016 - - - - - - - 0.9977 0.961
JANET-IT 873 0.0013 - - - - - - - - - 0.9971 0.956
JANET-AT 790 0.0013 - - - - - - - - - 0.9968 0.954
JANET-CZ 590 - - 0.0016 - - - - - - - 0.9965 0.952
JANET-BE 490 0.0013 - - - - - - 0.0002 - - 0.9955 0.946
JANET-PT 463 - - - - - 0.0011 - - - - 0.9935 0.937
JANET-HU 377 - - 0.0016 - - - - - - - 0.9945 0.940
JANET-HR 237 - - 0.0016 - - - - - - - 0.9912 0.924
JANET-IL 87 0.0013 - - - - - 0.0018 - - - 0.9877 0.910
JANET-SK 43 - - 0.0016 - - - - - - 0.0092 0.9929 0.932
JANET-LU 20 0.0013 - - - - - - - 0.0090 - 0.9840 0.897

Link Loads (pkt/s) 63603 51833 57756 37286 23680 19950 15213 11173 6133 2600
Contribution toθ 24.5% 5.1% 26.9% 2.1% 2.1% 6.8% 8.3% 0.7% 16.5% 7.1%

Table 1: Optimal sampling ratespi for each linki. For each OD pair, it indicates the size (pkts/sec), the link(s) where
it is monitored, their respective sampling rates and the average accuracy. All other links have zero sampling rate.

We use the accuracy instead of the utilityM (11) to
validate the impact of two assumptions we made in the
definition ofM : (i) the quadratic expansion to forceM
to zero when the sampling rate is zero (see Section 5.3);
(ii) the approximation for the effective sampling rateρ
(7) that may result in overestimating the size of certain
OD pairs.

We run 20 sampling experiments on the flow records
and compute the average accuracy over the 20 runs. Each
sampling experiment consists in simulating a random
sampling process on the flow records observed on linki
using the sampling ratepi in Table 1. The values in those
two columns demonstrate that the method achieves good
fairness among OD pairs. Although the algorithm max-
imizes the sum of the utilities, the results indicate that
the individual utilities are well balanced. Moreover, the
accuracy of the measurement is extremely good being on
average above 0.89 for any OD pair.

6.3 Comparison with other solutions
The last aspect we want to address is how the optimal
solution compares to naı̈ve solutions. Clearly, if any so-
lution performs well enough, then there is no reason to
add the complexity of the optimization algorithm we pro-
pose.

The first näıve solution would consist in monitoring
only the JANET access link to GEANT. This solution has
the advantage that every sampled packet would belong to
one of the OD pair of interest. However, in order to track
a small OD pair (e.g., JANET to Luxembourg) with a
similar accuracy to the one we obtain in Table 1, the net-
work operator would be forced to sample the link at a rate
of about 1%, i.e., the effective sampling rate for JANET-
LU. Given the high load on that link, this would require

the capacityθ to be 70% higher than the one needed by
our method to give the same measurement accuracy1.

Note that, apart from being a suboptimal solution,
there are several other reasons why monitoring the ac-
cess link may not be feasible. First, current versions of
Cisco’s NetFlow operates only on input interfaces, there-
fore access links can be monitored only in one direction
given that the router on the other side belongs to a dif-
ferent ISP. Furthermore, in corporate networks, the edge
routers (i.e., the router that is connected to the ISP) is
often directly owned and managed by the ISP that pro-
vides network connectivity. These routers, usually called
called CPE (Customer Premise Equipment), can only be
accessed by the ISP network operators. Therefore, in or-
der to keep our method general and applicable to a wide
range of network scenarios, we do not include the access
links in the set of possible links to monitor. Even with
this additional constraint, Table 1 shows that our method
performs extremely well.

An alternative to the monitoring of the access link is
to monitor all links that connect the UK PoP to the other
PoPs in GEANT. This solution allows to “balance” the
sampling rates over six links, instead of just one, and
gives more freedom to reduce the resource consumption.

In order to compare this solution with the optimum
we run our algorithm and restrict the choice of available
monitors to just the six UK links. Figure 4 shows the
comparison in terms of the accuracy over a wide range
of values of the capacityθ. With respect to the optimum,
this simple solution has poor performance with respect to
small OD pairs. This is expected given that the UK links

1Adding up the values in the second column of Table 1 we obtain
57,933 packets per second. At a sampling rate of 1%, this results in
173,798 sampled packets on average over a 5 minutes interval.
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Figure 4: Accuracy of the measurement for two different
solutions as a function ofθ.

are heavily loaded and the high sampling rate required
to accurately estimate a small OD pair results in a high
resource consumption.

In summary, we have seen that both in terms of re-
source usage and measurement accuracy there is a clear
advantage in using our method for setting the sampling
rates when compared to other naı̈ve solutions.

7 Deployment on a backbone network
Before deploying our method in a real backbone net-
work, we need to address two additional issues:(i) how
to set the input parameters and(ii) how to deal with traf-
fic variations over time.

As described in Section 5, the input parameters con-
sist of the quantitiesθ, E[1/Sk] andUi, for all k ∈ F
andi ∈ L. In order to obtain these quantities, the net-
work operator needs to have some prior knowledge about
the network. In particular, the operator needs to have a
rough idea of the sizes,Sk, of the OD pairs that are under
study. This is a classical bootstrapping problem and we
will present a solution in Section 7.1.

The second deployment issue has to do with the tem-
poral fluctuations of the OD pair sizes and link loads. In
the flow data, we observe that these fluctuations may be
very large and abrupt. This phenomenon is also more
pronounced for small OD pairs and confirms previous
measurement studies [27].

It is out of the scope of this paper to investigate the
reasons behind these fluctuations. They may be due to
normal time-of-day effects, failures in the network, flash
crowd events or other anomalies. What is important to
observe is that these fluctuations may lead our method to
“overshoot” the capacityθ when the link loads increase
abruptly, or to miss the target accuracy when an OD pair
size decreases. Section 7.2 shows the impact of the fluc-
tuations on the performance of our method, while Sec-
tion 7.3 introduces a simple heuristic to effectively cope

with them.
In the remainder of this section we will refer to flow

data collected over a 12 hours period from 8AM to 8PM
on November 22nd, 2004.

7.1 Bootstrapping phase
The bootstrapping method we propose is very simple.
Given the presence of traffic monitors on every link in
the network, an operator can get a rough estimate of the
OD pair sizes and link loads by activating all monitors
at once. The monitors should be activated at a very low
sampling rate, that we callbackground sampling rate(p̃),
to guarantee a minimal impact on the performance of the
routers and a limited overall resource usage.

We can then use these estimates as input parameters
to our method, derive a new set of sampling rates for
all the routers (many of which will be set to zero), re-
configure all routers, wait one measurement interval and
get a new estimate of the input parameters. We iterate
this procedure until the set of sampling rates converges
and no router needs to change its settings.

This approach, however, raises three questions:(i)
how do we estimate the size of the OD pairs?(ii) what
is an appropriate background sampling rate?(iii) how
many iterations are needed to perform the bootstrapping?

The optimization algorithm needs the values of
E[1/Sk] for all OD pairs of interest. After the first mea-
surement interval, we obtainXk, the sampled size of
each OD pairk. If Xk > 0, we replaceE[1/Sk] in (10)
with ρk/Xk – note thatpi = p̃, for all i ∈ L. In the
caseXk = 0, the OD pair has not been sampled at all.
This means that the original OD pair size is likely smaller
than1/p̃. For our purposes, here, any value below1/p̃
is a good enough estimate of its size. Hence, we replace
E[1/Sk] with cp̃, wherec is a constant arbitrarily set to
10 in all our experiments.

Note that finding an accurate estimator forE[1/Sk] is
outside the scope of this paper. In fact, we deliberately
choose to use one single sample of the size as the es-
timator because it is simple andclearly imperfect. Our
aim is to show that our bootstrapping method is robust to
incorrect input parameters and requires no configuration
effort.

To answer the last two questions, we run an experi-
ment over the flow data where we vary the value ofp̃
from 10−7 to 1. We estimate the size of the OD pairs
from JANET to all PoPs and the link loads across the
entire network. Then, we run the optimization algo-
rithm using this set of input parameters and a value of
θ = 100, 000 (as in Section 6) to derive a set of sampling
rates.

Figure 5 shows the average and worst accuracy over
all OD pairs as a function of the background sampling
rates. The figure compares the performance after one or
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Figure 5: Performance of the bootstrapping algorithm as
a function of the background sampling rate.

two iterations. It is clear that two iterations are sufficient
to complete the bootstrapping. Indeed, after two itera-
tions the accuracy of the measurement does not depend
anymore on the background sampling rate and thus on
the quality of the input parameters. We also observe that
a background sampling rates of10−7 is enough if the
algorithm is allowed at least two iterations. This demon-
strates that the bootstrapping algorithm is very robust
against incorrect input parameters.

7.2 Performance over time
We evaluate the performance of our method by estimat-
ing the size of all OD pairs originating from JANET over
the entire period 8AM to 8PM. As in Section 6, we set a
capacityθ = 100, 000. We perform the bootstrapping al-
gorithm as described in the previous section at 7.55AM
with a sampling rate of10−7. The sampling rates ob-
tained from the optimization algorithm are then set on all
the routers and unchanged for the entire 12 hour period.

Figure 6 compares the estimated and actual size for
two OD pairs (JANET to Luxembourg and JANET to
Switzerland). The figure shows the result for one run
of the sampling process over the 12 hour period. The es-
timate is extremely accurate and closely follows all fluc-
tuations over time for the JANET to Switzerland OD pair
(the two lines overlap completely in the figure). The es-
timate is somewhat less accurate for JANET to Luxem-
bourg but this is well expected given the small size of this
OD pair (it peaks at 70 packets/sec).

In Figure 7 we plot the accuracy of the measurement
over 20 experiments. Each experiment consists in one
run of the sampling process across the entire 12 hour pe-
riod. We show the average accuracy over all OD pairs
and the accuracy for the worst OD pair over time. The
average accuracy is always above 0.95 indicating that
we are able to closely track the fluctuations in all OD
pairs. Even, the worst OD pair is tracked with an accu-
racy around 0.90, but in certain measurement intervals,
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Figure 6: Estimated size of JANET to Luxembourg (top)
and JANET to Switzerland (bottom) OD pairs. Sampling
rates are fixed over the entire duration of the experiment
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Figure 7: Accuracy over all OD pairs averaged over 20
experiments. Sampling rates are fixed over the entire du-
ration of the experiments

the accuracy drops below 0.85.
A second metric that plays a crucial role in our method

is the evolution over time of the measured resource con-
sumption defined as the total number of sampled (and
thus processed) packets,θ̂(t) =

∑
i pi ∗ Ui(t). We are

interested in comparing this value withθ, the overall ca-
pacity. Figure 8 shows the relative difference computed
as (̂θ(t)− θ)/θ.

As we can see, the actual resource consumption is al-
ways above the constraint and it may exceed the con-
straint by as much as 120%. This is a consequence of
having set the sampling rate early in the morning with-
out taking into account time-of-day effects that lead to
an increase in traffic in the later hours of the day. There-
fore, the sampling rates are too high for the resource con-
straint, but result in good accuracy.

7.3 Adapting to traffic fluctuations
Ideally, the network operator would like to define a mea-
surement task and a target accuracy (or a limit on the
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Figure 8: Relative difference between the actual resource
consumptionθ(t) and the target constraintθ∗. Sampling
rates are fixed over the entire duration of the experiment

resource consumption) and then have the monitoring in-
frastructure that provides the best possible results inde-
pendently of when the measurement is started or which
network events occur during the measurement.

There are three specific events that make a given set
of sampling rates suboptimal: (1) The monitored links
start to carry a larger amount traffic that is not of interest
for the measurement task. This leads to an increase in
the resource consumption that does not correspond to an
increase in the accuracy (as described in Section 7.2).
(2) An OD pair of interest decrease in size requiring a
higher sampling rate in order to keep the target accuracy.
(3) The OD pairs of interest are routed differently in the
network and some monitors are only capturing traffic that
is not of interest.

In the following, we present solutions that allow us to
cope with each one of these events.

Fluctuations in the link loads. The link loads vary over
time for a variety of reasons, including time-of-day ef-
fects, anomalies, flash crowds, etc. At peak times the
traffic on a link may be orders of magnitude larger than
during quiet times. If the sampling rates are fixed and set
during quiet times, this may lead to exceed the resource
constraint as shown in Figure 8.

A possible solution is to define two thresholdsθL and
θH around the capacityθ and then predict the number
of sampled packets in the next interval,θ̄(t + 1). When
the prediction exceeds those thresholds, the collector can
trigger a recomputation of the optimal sampling rates and
(potentially) reconfigure the monitors.

At the end of each measurement interval, the collector
can estimatēθ(t+1) from the number of sampled packets
θ̂(t) derived from the received flow records. Identifying
an accurate predictor of the resource usage is outside the
scope of this paper. Our goal is to provide an analysis of
the performance of this method with the simplest predic-
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Figure 9: Average accuracy over all OD pairs and worst
accuracy. Monitors are reconfigured as soon as the re-
source usagêθ(t) is 10% above or below the capacityθ.
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Figure 10: Relative difference between the resource us-
ageθ̂(t) and the capacityθ. Monitors are reconfigured as
soon aŝθ(t) is 10% above or belowθ.

tor: we usêθ(t) as the predictor of the resource usage in
the next interval,̄θ(t + 1).

Figures 9 and 10 show the performance of this method
whenθL = 0.9θ andθH = 1.1θ. The results are av-
eraged over 20 experiments. Each experiment is started
at 8AM with the bootstrapping taking place at 7.55AM
(UTC). As we can see this method succeeds in keep-
ing the resource consumption within the desired bounds
even if the bootstrapping is performed during quiet times
(early morning). With this adaptive method, the network
operator can start the measurement at any time and for
any duration without incurring the risk of overloading
the monitoring infrastructure.

OD pair fluctuations. The case of fluctuations in an
OD pair traffic volume is the most difficult to address.
Indeed, if the size of an OD pair decreases, in order to
preserve the same measurement accuracy, there exists no
alternative but to increase the sampling rates. If the OD
pair accounts only for a small portion of the traffic on
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Figure 11: Comparison between estimated and actual ac-
curacy for JANET to Luxembourg OD flow

the monitored link, increasing the sampling rate causes a
large amount of traffic not relevant for the measurement
task to be collected.

We can see this phenomenon in Figure 9, where the
accuracy of the worst OD pair (JANET to Luxembourg
in our network scenario) drops significantly around 1PM
and 7PM. These drops are consistent with the decrease
in size of the JANET to Luxembourg OD pair (see Fig-
ure 6), but they do not correspond to equivalent decreases
in the link loads.

Therefore, in the cases where the network operator is
interested in preserving a target measurement accuracy,
the capacityθ (i.e., the total number of sampled packets)
needs to adapt to network conditions as well.

We now face a second challenge. Given a target ac-
curacy set by the network operator, how can we estimate
if, given the sampled sizeXk(t) of each OD pairk, the
sampling rate is “good enough” to meet our target in the
next intervals?

To this end, we approximate the accuracy as 1 minus
the square root of (10). As we did in Section 7.1, we
replaceE[1/Sk] by ρk/Xk(t), whereρk is the effective
sampling rate for OD pairk.

Figure 11 compares the estimated accuracy with the
actual accuracy from the data for the JANET to Luxem-
bourg OD pair (the smallest OD pair). As we can see,
our estimate closely follows the actual accuracy.

We can then use this approximation of the measure-
ment accuracy to trigger a new reconfiguration of the
traffic monitors as soon as the worst accuracy drops be-
low the defined target.

We first run the optimization algorithm with the same
value ofθ used in the previous interval. We then compute
again the estimate accuracy using the same size estimate
Xk(t) but with the new sampling rates. If the estimated
accuracy is still below the target, we increaseθ by 10%
until we reach the target accuracy for all OD pairs.

Furthermore, in order to avoid keeping aθ unneces-
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Figure 12: Adaptingθ to preserve the target accuracy.
Top: actual resource consumption over one experiment.
Bottom: averageθ over 20 experiments compared with
the case of complete knowledge of the traffic.
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Figure 13: Average accuracy over all OD pairs whenθ is
adapted to meet target accuracy (0.85)

sary large for long periods, we trigger a new reconfigu-
ration if the estimated worst accuracy is above our target
for one consecutive hour.

Figure 12 shows how the capacityθ varies over time
when the target accuracy is set to 0.85. The top graph
shows, for one experiment, the evolution of the actual re-
source usage and the capacity. The bottom graph shows
the average over 20 experiments and compares it with the
capacity that could be set knowing the exact size of each
OD pair. Finally, Figure 13 illustrates the performance in
terms of accuracy over all OD pairs and worst OD pair.

Around 1PM we observe a significant increase of the
capacityθ. This corresponds to a significant drop in ac-
curacy for the worst OD pair. Note that in the previous
non-adaptive schemes, the poor accuracy would persist
for more than one hour (see Figure 9). Increasingθ al-
lows instead to quickly bring the accuracy above the tar-
get. Moreover,θ is decreased as soon as there is no more
need of the additional resources.
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Figure 14: Evolution of the sampling rates over time.
Top: lightly loaded links. Bottom: heavily loaded links.

A last aspect we want to investigate is the evolution of
the sampling rates over time. We are interested in hav-
ing sampling rates that are always low. Moreover, we
want to verify that to track effectively OD pairs, a static
placement of monitors is not sufficient.

Figure 14 shows the sampling rates for the10 monitors
that are activated during the day. The top graph shows
the sampling rates for the lightly loaded links, while the
bottom graph shows the sampling rates on the heavily
load links.

The number of monitors used to track the 20 OD pairs
of interest varies between eight and ten. Often the algo-
rithm includes one or more of the lightly loaded links in
order to improve the accuracy or reduce the resource con-
sumption. The sampling rates exceed1/100 only for the
lightly loaded France to Luxembourg link that is instru-
mental to accurately track the fluctuations of the JANET
to Luxembourg OD pair. The heavily loaded links (all
links from the UK, a major PoP in GEANT’s network)
are all set to low sampling rates and experience much
less variability over time.

Routing matrix changes.Network failures or BGP up-
dates may modify the path taken by an OD pair under
study across the network. When this occurs, some moni-
tors may be recording traffic that is not of interest for the
operator. Detecting routing changes is very simple given
that routing messages need to propagate to all routers.
ISPs often deploy systems to record and process all intra-
domain and inter-domain routing messages [14, 25]. The
monitoring infrastructure can therefore be aware of rout-
ing changes that affect the OD pairs of interest and trig-
ger a new bootstrapping phase. The bootstrap would al-
low to find where the OD pairs are now entering the net-
work (e.g., for multihomed customers) and get a new es-
timate of their size. Therefore, after two measurement
intervals the monitoring infrastructure will have recon-
figured itself with a new set of optimal monitors and sam-
pling rates (see Section 7.1).

7.4 Implementation feasibility

We have shown that it is possible to design a self-
configuring, self-adapting monitoring infrastructure in
today’s backbone networks. Our proposed method can
be deployed today in any network running NetFlow (or
any other widespread monitoring infrastructure). The
network operator has just to select a measurement task
(e.g., track any set of OD pairs) and a measurement strat-
egy (i.e., focus on the resource usage or on the accuracy).
The proposed mechanisms will then choose the monitors
that allow to track those OD pairs with an optimal use of
the resources and adapt to changes in the network condi-
tions.

However, we did not look at the time it takes to re-
configure NetFlow on today’s routers. All our results as-
sume zero time to run the optimization algorithm (that
is instead in the order of a few seconds), and to set the
new sampling rates on the routers. Unfortunately, we do
not have any figures about the time needed to remotely
configure NetFlow, as we did not have any access to the
routers in the network but only to the flow records stored
at the collector. We leave this task as future work.

Our approach uses only the information stored (or that
can be derived) from NetFlow records. This is one of
the strengths of our method given that it is generic and
can be applied to new NetFlow versions without modi-
fications. Newer versions of NetFlow are constantly in-
creasing the amount of information that is exported in
each record. For example, NetFlow v9 records contain
BGP next-hop information that would significantly sim-
plify the task of finding the egress PoP for a given net-
work prefix [22]. Moreover, router vendors are report-
edly working on ways to support variable sampling rates
as in [7]. In this case, our method can be used to de-
fine lower bounds on the sampling rates across the entire
network, while the individual routers adapt to the local
traffic conditions given their available resources.

The method gives the best performance when com-
pared to alternative solutions (Section 6.3) if different
network links have different load and carry a diverse set
of OD pairs. Indeed, lightly utilized links are candidate
for higher sampling rates that allow to compensate for the
low sampling rates that we set on heavily loaded links.
This is true for the GEANT network and other measure-
ment studies have indicated that this is a common case
for other ISP networks as well [2, 8].

Finally, there are a number of ways in which the adap-
tive methods described in this section can be extended.
The choice to increaseθ by steps of10% and to decrease
it after an hour is in fact somewhat arbitrary (see Sec-
tion 7.3). It showed to perform well in practice but one
can find smoother ways to adaptθ to the traffic condi-
tions. It is also possible to use different predictors for
the resource usage, as well as estimators for the OD
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pair size. All the results show the baseline performance
when the prediction is done using just the previous sam-
ple. Even with this simple techniques, our method has
demonstrated to work well and achieve the target accu-
racy. However, other predictors may perform better for
different datasets.

8 Conclusion
We reformulated the monitor placement problem to adapt
it to the reality of network operations and management in
the Internet. We have proposed an optimization method
to select and configure passive monitors in a backbone
network. The method receives as input the network
topology, the routing matrix and the set of OD pairs of
interest. It returns a set of monitors (and their sampling
rates) that is optimal with respect to the measurement
task to perform.

We addressed the deployment of this method on the
GEANT backbone network where the optimal solution is
a moving target given traffic fluctuations and other net-
work events. We have described the performance of our
method considering a canonical measurement task, i.e.,
the estimation of the size of a set of OD pairs. We have
shown that our method is able to successfully track small
OD pairs without any prior knowledge about their size,
and with a lower resource consumption when compared
to näıve techniques.

Although the evaluation in this paper is in terms of es-
timating OD pair sizes, the optimization method is not
specific to them. The method can be applied to a wide
range of measurement tasks for which a utility function
can be sought. Our ongoing work is centered on defin-
ing new expressions for the utility function for appli-
cations such as anomaly detection and network perfor-
mance analysis. We are also studying alternative formu-
lations for the objective function as well as trying to iden-
tify new datasets and networks.
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