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Abstract— Verifying the accuracy of a passive measurements-
based inference technique under all possible network scenarios is
a difficult challenge - the measurement point has limited observ-
ability of events along the path, and monitored paths can exhibit
a wide range of network properties (packet loss, reordering,
end-end delay, route changes). In this paper, we propose and
apply formal verification techniques to exhaustively verify the
correctness of an inference technique. We apply this approach to
the problem of inferring packet retransmissions and reorderings
from passively observed packets at a single measurement point.
We define classification rules for this inference problem and,
through a combination of model-checking and formal reasoning,
uncover all possible events in the network for which the rules
produce incorrect inferences. Our work is novel in its use of
formal verification tools for evaluating inference techniques in
network measurements.

I. I NTRODUCTION

Inferring network properties through passive measurements
is an interesting, challenging, and growing area of research.
A monitor is placed on a network link and passively observes
packets passing through the link. One can then apply inference
techniques on these observations to compute performance
metrics [3], [10], [14], [13], [11], study protocol behavior [26],
[11] and understand the dynamics of traffic demands in the
network.

The primary advantage of passive measurements is its
scalability. From a single measurement point, a traffic monitor
can observe a very large and diverse set of end-end paths,
connections and end-hosts. However, the nature of the mea-
surements also presents some challenging problems. Since
the monitor can be located anywhere on the end-end path,
it has limited knowledge of all the events that occur along
the path. Also, since the monitored traffic might arise from
and traverse a very heterogeneous set of sources and end-end
paths, inference techniques must deal with a wide range of
path properties (end-end delay, packet loss, reordering rates
etc.) and network conditions along the path (link failures, route
changes etc.).

The limited observabilityof network events and theirhet-
erogeneityunderscore one of the main problems behind pas-
sive measurements:“How to determine whether the inferences
made by the passive monitor are correct and complete (i.e. all
events are detected)?”Simulations and real world experiments
allow one to validate inference techniques but they fall short

of emulatingall possible network scenarios under which the
techniques may fail.

The goal of this work is to introduce a new approach for the
evaluation of passive measurement based inference techniques
through an exhaustive formal analysis over all possible events
in the network.

Towards this end, we revisit a well-known inference prob-
lem [3], [10], [26]: the identification of retransmitted and
reordered packets within a packet stream as observed by a
monitoring point in the middle of a TCP connection’s end-
end path. This problem plays an important role in network
troubleshooting and diagnosis given that packet retransmis-
sions are a measure of the end-end congestion and loss-rate in
the path, while reorderings and replications may indicate the
presence of faulty equipment, route flaps, or routing loops.

Our approach relies onmodel checkingand reasoning about
protocol and network behavior. The main challenge in model
checking is dealing with the state space explosion problem.
This problem occurs in systems with many components that
can interact with each other or systems with data structures
that can assume many different values. In our case, the
problem surfaces because the communication protocol has
input parameters that take a very large range of values (i.e.,
sequence numbers). We will use a model checker to discover
whether the classification rules fail for some specific (and
small) values of these parameters. Then, with these cases as a
guide and by reasoning about protocol and network behavior,
we prove properties of the classification rules for all possible
values of the input parameters.

The contributions of this work can be summarized as
follows. We consider classification rules for the detection and
classification of packet retransmissions and reorderings by
a passive measurement point. We verify the correctness of
these rules using the SPIN model checker [8] with the end-
points implementing theGo-back-N(GB(N)) protocol. For
small values ofN , we identify the set of cases for which the
classification rules cannot detect packet retransmissions. By
reasoning about the behavior ofGB(N) protocol, we then
prove properties about the classification rules for any value of
N . We then consider the case of the end-points implementing
a TCP-like protocol, termedFastRetx(N), and again verify
the correctness of the classification rules.

This paper is organized as follows. We begin with a dis-



cussion of related work in Section 2. We precisely define
our verification problem and give a high level road map of
our approach in Section 3. Section 4 describes in detail how
we implement the different components of the system and
carry out the verification in SPIN. In Section 5, we introduce
the GB(N) protocol, and verify our inference rules using
SPIN, for the casesN = 2, 3, 4. We then provide a formal
proof in Section 6, to extend these results for any value
of N . Then, in Section 7, we look at a more complicated
protocol that we termFastRetx(n) that has TCP-like loss
recovery mechanisms, and verify the classification rules for
this protocol. We then take a step back and discuss the
implications of our observations for the different flavors of
TCP in Section 8. Finally, we conclude with a discussion of
future directions in Section 9.

II. RELATED WORK

There exists a significant body of literature about the formal
verification of communication protocols. Also, the technique
of model checking has also been extensively used to verify
network protocols. In [20] and [19] the authors use the model
checker CMC to identify bugs in the Linux TCP implementa-
tion and the AODV routing protocol. The SPIN model checker,
in particular, has been widely used, e.g. in [2][6] to verify
protocol properties. For a further extended survey of formal
verification applications using SPIN, the reader is referred
to [8] and proceedings of the SPIN workshops [1]. There
also exist other works in the literature that, similar to our
approach, use a combination of model checking and formal
reasoning for protocol verification, e.g. [22], [23] take a formal
reasoning approach to prove properties about Transaction-TCP
and TCP-SACK protocols, and [5] uses a combination of
SPIN and formal reasoning to verify properties of distance
vector routing protocols. Our work is the first to use the tools
of formal verification towards the evaluation of measurement
techniques. Verification of a measurement technique has to
take into account the interactions between the protocol sender
and receiver behavior, the channel behavior and the inference
technique itself. In subsequent sections we describe the frame-
work using which we verify the classification rules at a passive
measurement point.

III. PROBLEM DEFINITION AND APPROACH

Our inference problem is as follows. Consider a data sender
and a receiver communicating through a protocol that en-
sures reliable in-order delivery of messages. Messages can be
dropped and reordered in the end-end path. A passive monitor
is located in the path, and observes all packets between the
sender and the receiver. Figure 1 illustrates this scenario.
The measurement point implements inference rules to identify
all packet retransmissions and reorderings in the connection
between the sender and the receiver. Our goal is to verify,
whether these rules cancorrectly identify all retransmitted and
reordered packets that appear in the end-end path.

We model the various components of the network, namely
the protocol behavior at the sender and receiver, the commu-
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Fig. 1. The network scenario

nication channels (that induce packet loss and reordering) and
the measurement point’s inference rules, using a framework
similar to theCommunicating Finite State Machineframework
(CFSM) that has previously been used [18] for protocol
specification and for modelling a network. A CFSM models
the nodes of a network as a set of finite state machines, and
a set of channels that represent the communication channels
between any two nodes. Thus, it is a natural and simple
formalism to specify our network model.

As a first step we implement this model in the SPIN
model checker [8]. The SPIN model checking system has been
widely used to verify communication protocols. The protocol
and the inference heuristics are specified using the Promela
language and a protocol simulator can perform random or
guided simulations. The model checker performs an exhaustive
state-space search to verify that a given property holds under
all possible simulations of the system.

In our case, the model checker generates all possible packet
loss and reordering events in the channels. It then checks
which (if any) retransmissions and reorderings are not detected
by the measurement point’s inference rules.

Model checking has a number of advantages over traditional
approaches based on simulation, testing, and deductive rea-
soning. In particular, model checking is automatic and usually
quite fast. Also, if the design contains an error, model checking
will produce a counterexample that can be used to pinpoint the
source of the error.

However, as discussed earlier, the model checker is limited
by the state explosion problem. Hence it can handle only some
specific and simple values of the protocol’s input parameters.
Using the cases generated by the model checker for which the
inference rules are found to be incorrect, we extend the results
for all values of the protocol’s input parameters through formal
reasoning about the protocol behavior.

IV. SPECIFICATION AND VERIFICATION IN SPIN

In this section, we present a detailed specification of the
state machines of the system and the steps leading to the
verification in SPIN. The system consists of the following
components:

Sender and Receiver.These two state machines (Ms andMr)
implement the transport protocol that governs the communi-
cation between the end-hosts. In [12] we provide the Promela
code for the various transport protocols that we investigate.
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Fig. 2. The network model

Channel daemons.Mc1,Mc2,Mc3 are the representations of
channel daemons between the sender and the measurement
point, the measurement point and the receiver, and the receiver
and the sender respectively. These daemons create loss and
reordering events in the communication channels between the
two end points. As described in the state machine description
in [12], these daemons snoop on the channel, and if there is
a packet present, they take one of three actions:(i) let the
packet go through with no interference;(ii) remove and drop
the packet from the channel;(iii) remove the packet, change
its ordering with the subsequent packet, and put them back in
the channel.

Measurement point.Minf represents the measurement point
daemon. This daemon is a passive observer of packets passing
between the protocol sender and receiver, and encodes the
rules for detecting and distinguishing between retransmis-
sions and reorderings. The classification rules assume certain
properties about protocol behavior, namely that the packets
carry monotonically increasing sequence numbers, and that
transmission is reliable, i.e. lost packets are retransmitted
until received successfully. The inference rules also assume
that the timescale at which reordering events occur in the
network is smaller than the round trip propagation delay of
the connection.

Any data packet observed at the measurement point is
referred to by the notation(x, t), where x is the sequence
number of the packet, andt is the time at which the packet
was observed. A packet is defined to beout-of-sequenceif it
has a sequence numberx less than or equal to that of other
previously observed packet.

When the measurement point does observe an out-of-
sequence packet it classifies it as a retransmission or a re-
ordering based on the following rules
• classify.retx: Let (x, torig) refer to the packet with se-

quence numberx sent by the sender, and observed at time
torig. If after some time, we observe an out-of-sequence
packet(x, toos), with the same sequence numberx and
toos > torig, then(x, toos) is a retransmission.

• classify.reord: Suppose the measurement point ob-
serves an out-of-sequence packet(x, toos), and lettinseq

(tinseq < toos) be the earliest time at which a packet with
a sequence number greater thanx is observed, we then

look at thetimelag toos − tinseq,

– if toos − tinseq >= RTO, (x, toos) is a retransmis-
sion

– if toos − tinseq < RTT , (x, toos) is a reordering

HereRTO is the value of the sender’s retransmission timer
(that we assume the measurement point knows) andRTT is
the measurement point’s estimate of the round trip delay of
the end-end path.

We also introduceCsc1, Cc1inf , Cinfc2, Cc2r, Crc3 and
Cc3s, as the channels between the various components. A
representation of the system is illustrated in Figure 2.

We must now choose the communication protocol used by
the sender and the receiver. As a first step, we study the
inference techniques with the end points implementing theGo-
back-N (GB(N)) protocol. We chooseGB(N) because it is
the simplest window-based protocol, and a tractable first step
in analyzing more complicated window-based protocols such
as TCP. Later, we extend our analysis to a more complicated
protocol, which while retaining features ofGB(N) such as
a fixed window, and a go-back-N timeout mechanism, also
incorporates TCP like mechanisms such as loss recovery
through fast retransmit. Details of the two protocols will be
presented in subsequent sections.

Our goal is to determine whether all retransmitted and
reordered packets that reach the measurement point are de-
tected as out-of-sequence by the measurement point, and
then classified correctly to be either a retransmission or a
reordering. In order to perform this check with SPIN, we
introduce atypefield in the header of any packet transmitted
by the sender. This field can take one of three values:<Norm,
Retx, Reord> . When a packet is transmitted by the sender
for the first time, its type field is set toNorm. If this packet is
dropped by the channel daemon process, then when a packet
with the same sequence number is retransmitted by the sender,
its type is set toRetx . Similarly, if the channel daemon
reorders the position of this packet with a packet sent later
in time by the sender, it rewrites the type field toReord .

The model checker can generate all network events that
would cause packet retransmissions and reorderings. When the
measurement point observes a packet, it checks if this packet is
out-of-sequence based on whether the packet has a sequence
number less than or equal to that of a previously observed
packet. If this is the case, the measurement point invokes the
rules classify.retxand classify.reordand classifies the packet
to be a retransmission or a reordering. Finally, it compares its
decision with the type field in the packet, and if the two do
not match, we have a case in which a packet was misclassified
by the measurement point.

A. Discussion of model assumptions

Until now, in this section we have described our system
model in detail. As stated, our primary goal is to verify
whether the measurement point can detect and correctly clas-
sify all packet retransmissions and reorderings. We have made
several assumptions in our model to simplify the verification



process. We now discuss, how (and if) each of these assump-
tions impacts the completeness of our study. Firstly, we have
excluded the occurrence of packet replications in the end-end
path. While our intention is to allow all possible events that
result in out-of-sequence packets in order to comprehensively
test the classification rules, we exclude packet replications
since it makes verification simpler, and several measurement
studies [9], [21] have indicated that packet replications are an
extremely rare phenomenon in the Internet.

Our classification rules determine whether an out-of-
sequence packet is a retransmission or a reordered packet by
comparing itstimelagwith the connection’s RTT and RTO. We
assume that the measurement always has an accurate estimate
of the connection’s RTT and RTO (the reader is referred
to [11], [25] for techniques that provide estimates of e.g.,
a TCP connection’s RTT/RTO from a passive measurement
point). We also impose restrictions on the time scale of packet
reordering and retransmission events. It is clear that our clas-
sification rules may give incorrect results if the measurement
point has an incorrect estimate of the sender’s RTT and RTO,
or if the time scales of these events do not conform to our
assumptions.

However, our goal in this verification exercise is not to ver-
ify the assumptions around which the classification rules were
designed. Instead we aim to investigate whether there exist
network scenarios that would cause the classification rules
to give incorrect results even when all the assumptions hold.
As with all verification efforts, the results of the verification
process hold only when the stated assumptions hold true.

Finally, we restrict reordering events to occur only between
successive packets. We make this simplifying assumption
since the only aspect of packet reordering that determines
the decision of the classification rules is thetimelag of the
reordered packe. Thus, whether a packet is reordered with a
subsequent packet, or across multiple packets, are equivalent
events as long as thetimelagof the reordered packet, satisfies
our assumptions about the time scale of reordering events.

V. V ERIFYING INFERENCE HEURISTICS FORGB(N)

In this section we consider theGB(N) protocol and prove
its correctness even in the case of in-network reordering of
packets. We then show the correctness of the measurement
point’s out-of-sequence inference technique using SPIN.

A. Correctness of GB(N) in the presence of reordering

The GB(N) protocol, in brief, operates as follows. The
sender can have as many asN packets outstanding in the
channel at any point of time. The receiver has a buffer of one,
and hence only accepts packets that are in sequence. When a
packet is dropped, the sender recovers from loss only by using
a timeout mechanism. If no acknowledgement is received
before the timeout expires, the sender retransmits all packets
that are yet unacknowledged. More details of theGB(N)
protocol can be found in [24], [15], and a description of
the GB(N) sender and receiver state machines are presented
in [12].
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Fig. 3. Timelag of a reordering event: packet with sequence numberx is
reordered with subsequently sent sequence numberx + 1

GB(N) uses a sequence number variable carried by both
data and ACK packets. The range of values taken by this vari-
able impacts the model checking process – a large range leads
to a state space explosion when the model checker performs
an exhaustive state space search. In order to get around this
problem, we use a version of theGB(N) protocol that uses
a small bounded range of sequence numbers. However, this
requires us to ensure that the protocol behaves correctly, in the
presence of packet loss and reordering, despite this constraint.
The protocol behaves correctly if the receiver never releases
a packet out of the correct order to the higher layer. More
formally, let {p1, p2, ..., pn} be packets released by the sender
with their indexes indicating the order in which they are sent
and let{x1, x2, ..., xn} be their respective sequence numbers.
A protocol behaves correctly if the receiver (by examining the
sequence numbers of the received packets) always sends these
packets up to the higher layer in the order in which they are
sent.

It has been earlier noted [4], that theGB(N) protocol
behaves correctly if the protocol adopts a sequence number
range which is equal tom, where m > N . However the
proof of this property makes the assumption that packets are
deliveredin sequenceby the communication channel between
the sender and the receiver. This assumption is not true in our
context since the channel daemons can reorder packets along
the end-end path. We now establish conditions under which
GB(N) protocol behaves correctly with a bounded range of
sequence numbers in the presence of reordering in the end-end
path.

We first define the notion oftimelagof a reordering event.
Let a packet with sequence numberx be released by the sender
at time t1. Let x + 1, x + 2 be the sequence numbers of
packets released by the sender at a point in time later than
t1. Now suppose packetx is reordered, i.e., it arrives at the
receiver later than some packet with sequence number> x.
Also let t2 be the time at which the first of any packets with
sequence number> x, reaches the receiver, andt3 the time
whenx finally arrives at the receiver. Then the timelag of this
reordering event is the differencet3− t2. This is illustrated in
Figure 3.

Theorem 1:The correctness of theGB(N) protocol is
preserved if the sender uses a bounded range of sequence
numbersm, wherem > 2N , and the timelag of any reordering



event is always less than the minimum two-way propagation
delayD.

Proof: Suppose a packet,p, with sequence number (S mod
m) is released by the sender and reordered in the channel (i.e.,
it is exchanged with a packet sent later in time by the sender).
Now suppose the maximum sequence number observed at the
receiver before packetp eventually reaches the receiver is
((S + x) mod m). First, consider the case whenx < 2N .
Since m > 2N , it is easy to see packetp could never be
erroneously accepted by the receiver, since there could not
have been any sequence number wrap around between (S mod
m) and ((S + x) mod m).

Now consider the case whenx ≥ 2N i.e., ((S+2N ) modm)
has been observed at the receiver. This would imply that the
packet with sequence number ((S +N ) modm) has also been
observed by the receiver, since sequence number ((S + 2N )
mod m) could have been sent only after the sender received
an ACK for ((S + N ) mod m). Now, the interval between
when sequence numbers ((S + 2N ) mod m) and ((S + N )
mod m) arrive at the receiver must be≥ D. This implies
that the reordering timelag of packetp is also greater thanD,
since the packet with sequence number ((S +N ) modm) was
transmitted later than (S modm). However, we have imposed
a restriction on the channel that no reordering event occurs
with a timelag larger thanD. Thus when a reordered packet
with sequence number (S mod m) arrives at the receiver, the
maximum sequence number observed must be less than ((S +
2N ) mod m), and so the protocol functions correctly.

¤

B. Detecting retransmitted and reordered packets

As suggested by Theorem 1, we adopt2N+1 as the range of
sequence numbers used by theGB(N) specification in SPIN,
and, to ensure the correctness of the protocol, impose the
constraints that reordering timelags are less than the round
trip propagation delay of the connection. Apart from these
restrictions to guarantee the correctness ofGB(N), we make
the following additional assumptions about network and sender
behavior throughout the rest of the paper:

• The channel daemons do not cause any packet replications.
A replicated packet would also manifest itself as an out-
of-sequence packet at the measurement point and must
be distinguished from retransmissions and reorderings for
correct classification. However, measurement studies [10]
have shown that packet replications are extremely rare in
the Internet, and hence we exclude their occurrence from
the model.

• The channel daemon between the measurement point and
the receiver does not reorder any packets.A packet re-
ordered after the measurement point will not be out-of-
sequence at the measurement point, hence the measure-
ment point cannot detect this reordering event, and it is
also excluded from the model.

• The sender always has data to send, and the retransmission
timer of the sender is not triggered before it has sent all

packets allowed by its window.We make these assump-
tions to exclude trivial cases in which the measurement
point cannot detect packet retransmissions, such as if the
last packet of the session is lost before the measurement
point and is then retransmitted, or if a packet is lost,
and retransmitted before the sender could transmit any
more packets. Removal of these cases also simplifies the
verification by SPIN.

Furthermore, we initially consider the case where there are
no losses or reorderings of an ACK packet and that a packet
is never retransmitted because of a delay in the arrival of
its ACK (we refer to this case asunneeded retransmissions).
These last two assumptions allow us to significantly simplify
the verification in SPIN but later we will relax them and verify
the correctness of the classification rules when ACKs can be
lost or delayed.

Our goal is to verify the following two properties of the
classification rules using the model checker with theGB(N)
protocol:

1) thecompletenessof the inference heuristics, i.e., whether
all retransmitted and reordered packets that reach the
measurement point are identified as out-of-sequence
packets.

2) the correctnessof the classification rules,classify.retx
and classify.reord i.e., the measurement point never
misclassifies an out-of-sequence packet, given the as-
sumptions we make about the sender and the network
behavior.

We used the model checker for aGB(N) protocol with
N ≤ 4 (see [12] for the Promela code used in this work).
The SPIN model checker identified the following cases under
which the measurement point could not detect an out-of-
sequence packet.

Let there be a packet with sequence numberx, transmitted
by the sender at timet′ and lostbeforethe measurement point.
A subsequentretransmissionwith the same sequence number
x transmitted by the sender at timet′′, is not detected to be out-
of-sequence at the measurement point when any of the events
{E1(x, t′′), E2(x, t′′), E3(x, t′′)} occur (see Figure 4):

EventE1(x, t′′): The packet with sequence number
x−N+1 was also lost before the initial transmission
of sequence numberx was lost.

EventE2(x, t′′): The packet with sequence number
x−N +1 was reordered in sequence with an earlier
sent packet.

Both E1(x, t′′) andE2(x, t′′) involve a packet with sequence
numberx lost before the measurement point, and the packet
with sequence numberx − N + 1 dropped (or reordered) in
the path. As mentioned earlier, aGB(N) receiver only accepts
those packets which are in order. If the packet with sequence
numberx−N +1 is lost (E1), none of the subsequent packets
that reach the receiver are acknowledged. Also, ifx−N + 1
does not arrive in order (E2), it is dropped by the receiver,
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Fig. 4. Cases in which retransmitted and reordered packets are undetected at measurement point, forGB(3), m = 7.

and this has the same impact as whenx−N + 1 was lost in
the path.

At this point, the sender hasN unacknowledged packets in
the channel (sequence numbersx−N+1,...,x), and the receiver
will not send any new acknowledgement forcing the sender to
wait for the timeout to expire. Thus, the retransmission of
packetx will not be detected as an out-of-sequence packet by
the measurement point given that no packet with a sequence
number larger thanx has ever been sent.

Event E3(x, t′′): All of the possible packets with
sequence numbersy ∈ {x + 1, ..., x + N − 1} sent
by the sender between the first transmission att′ and
t′′ were also dropped.

Event E3(x, t′′) describes the case when a packet with se-
quence numberx is lost before the measurement point, and
all subsequent packets sent with sequence numbers> x are
also dropped before the measurement point. Again, it is easy to
see that when the retransmission of sequence numberx arrives
at the monitor, it will not be considered to be out-of-sequence,
as shown in Figure 4.

C. ACK losses

So far, we have not considered the case of acknowledgement
loss by the channel. We now relax this assumption by adding
a channel daemon between the receiver and the sender. Upon
the arrival of an ACK, the daemon either lets the packet
through, or drops it. With this addition, we again submit our
model to SPIN. SPIN now exposes a new event for which
the measurement point cannot detect a retransmitted packet as
being out-of-sequence (Figure 5):

EventE4(x, t′′): A packet with sequence numberx,
transmitted by the sender at timet′ is lostbeforethe
measurement point. For all packets with sequence
numbersx−N + 1, ...., x− 1, sent prior tot′, one
of the following events occur:
• the packet is lost in the path.
• the packet reaches the receiver and if it gen-

erates an ACK that cumulatively acknowledges
sequence numberx−N + 1, this ACK is lost.
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Fig. 5. CaseE4(x, t′′), GB(3)

A subsequent retransmission ofx sent at timet′′ is
not detected to be out-of-sequence by the measure-
ment point.

The impact of lost ACKs is to prevent the sender’s window
from freeing up and can thus restrict the transmission of new
packets. For the sender’s window to move beyond a sequence
numberx, it should receive at least one new ACK for the
packets, with sequence numbers{x−N +1, x−N +2, ..., x−
1}, sent prior to an earlier version of the packet with sequence
numberx. We have already shown that this cannot occur if
eventsE1(x, t′′) andE2(x, t′′) occur. However, even if these
two events do not occur, but all theN − 1 packets sent prior
to sequence numberx are either lost, or if they generate an
ACK that acknowledges sequence numberx−N +1, and this
ACK is lost, then its easy to see that no new ACKs will reach
the sender after the initial transmission ofx, and its window
will not move beyond sequence numberx.

D. Unneeded Retransmissions

We now remove the assumption that acknowledgements are
never delayed enough to force the sender to retransmit a packet
that has already reached the receiver. Thus we now allow for
the sender to retransmit a packet while the initial transmission
of that sequence number (and its corresponding ACK) are
still in the channel. In order to verify this modified network
model we need to assume that there are no losses on the
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acknowledgement path given that SPIN could not complete
the verification (due to state-explosion) even for small values
of N .

We then run the model checker forGB(N) with N = {2, 3}
and identify a new event in which a retransmitted packet is
not detected by the measurement point (see Figure 6).

EventE5(x, t′′): Let a packet with sequence number
x, transmitted by the sender at timet′, that is lost
beforethe measurement point. Lety be the sequence
number of the first packet sent by the sender aftert′,
such thaty > x. Consider a subsequentretransmis-
sion with the same sequence numberx transmitted
by the sender at timet′′. This retransmitted packet is
not detected to be out-of-sequence if it is reordered
with sequence numbery before the measurement
point.

As clearly illustrated in Figure 6, the packet with sequence
numberx = 2 will be mistaken by the measurement point for
the original transmission and be inevitably not deemed out-of-
sequence.

E. Classifying out-of-sequence packets

We now proceed to the second part of our verification
which is to show that when a measurement point observes
an out-of-sequence packet, the decision it makes (whether
the packet is a retransmission or a reordering) is consistent
with what actually happened in the network. Now, as we
have described in the earlier section, the classification rules
rely on the different timelags of packet retransmissions and
reorderings to distinguish between the two (see Section IV).

The measurement point makes its decisions based on the
time interval between when the measurement point observes
an out-of-sequence packetx, and when it observes packet
x′, where x′ is the first packet with a sequence number
greater thanx that is observed at the measurement point. The
magnitude of this interval determines whether the OoS packet
is a reordering or a retransmission.

However, the model checker has no built-in notion of time
and there is no mechanism to quantify the time between any
ordered sequence of events. Thus, in order to get around this
problem, we impose the property that when reordering or re-
transmission occurs, the timelags conform to the assumptions.
As a result of this assumption, the model checker throws up
only one case in which the measurement point’s decision does
not match the type field carried by the packet. This happens
when a retransmitted packet is itself reordered with other
packets. In this case the resulting out-of-sequence packet is
simply classified to be a retransmission, since the timelag of
this packet is still greater than theRTO of the sender. Note
that in this case the packet would belong at the same time
to two states (retranmitted and reordered) that the rules in
Section IV explicitly do not allow.

VI. GENERALIZATION TO ANY N

The events described so far were discovered by SPIN for
small values ofN . The next question is whether these are the
only events that result in a retransmitted or reordered packet
going undetected at the measurement point forany value of
N of the GB(N) protocol. Reasoning on the behavior of
the protocol and our network model, we can prove that those
events are the only ones that would cause a retransmitted or
reordered packet to pass undetected by the measurement point.

Before proceeding, let us define some notation:

• A(x, t, t′′) is true if some packet with sequence number
x sent by the sender at timet′′ arrives at the measurement
point at a timet, and this packet is either aretransmission
or a reordering.

• P (x, t, t′′) is true only if at some point in time before
t, the measurement point also observed a packet with a
sequence numberx′, such thatx ≤ x′, i.e., it is true if
x is recognized as out-of-sequence by the measurement
point.

• Q(x, t′′) is equal to¬(E1(x, t′′)∨E2(x, t′′)∨E3(x, t′′)∨
E4(x, t′′)∨E5(x, t′′)), i.e., it is true if none of the events
E1− E5 has occurred.

We can then state the following.

Theorem 2:Suppose aretransmittedor reordered packet
sent with sequence numberx at time t′′ using theGB(N)
protocol, for anyN , arrives at the measurement point at
time t. Also suppose thatQ(x, t′′) is true. Then, the property
P (x, t, t′′) will hold true, that is,

A(x, t, t′′) ∧Q(x, t′′) → P (x, t, t′′) (1)

Proof: Our proof is by contradiction. We initially assume
that:

1) A(x, t, t′′) is true, i.e. a retransmitted or reordered packet
reached the measurement point at timet. We shall refer
to this packet asp.

2) P (x, t, t′′) is not true, i.e., the measurement point does
not consider packetp out-of-sequence.



3) Q(x, t′′) is true, i.e.,noneof the eventsE1− E5 have
occurred.

We will show that if1) and2) hold, then 3) cannot be true,
and one of the eventsE1− E5 must have occurred.

If P (x, t, t′′) is false, the measurement point has not seen
any packet with sequence numberx′ such thatx ≤ x′. This
implies thatp has to be a retransmission, since if it had been a
reordered packet then a packet with a sequence number greater
than x must have appeared at the measurement point before
t. Now, the only ways in which the measurement point could
not observe a packet with sequence number greater than or
equal tox between the original transmission of a packet with
sequence numberx andp could be because:

• The sender couldnot sendany packet with a sequence
numberx′ greater thanx since the original transmission
of sequence numberx. Since we assume the sender
always has data to send, this can happen only because
the sender has not seen an acknowledgment for any of
theN − 1 packets sent previous tox. In order for this to
occur, one of the following eventsmusthave happened:

– the packet with sequence numberx′′ = x − N + 1
was lost in the channel.

– the packet with sequence numberx′′ = x−N+1 was
reordered with an earlier sent packet in the channel.

– or for all packets with sequence numbers{x−N +
1, x − N + 2, ..., x − 1}, either the packet is lost,
or if it triggers an ACK that acknowledges sequence
numberx−N + 1, then this ACK is lost.
This would basically result in the sender havingN
unacknowledged packets in the network and stopping
it from sending more packets.

Any of these events would freeze the advancement of
the right edge of the sender window beyondx (as is
illustrated in Figure 4), and no new packets with sequence
number> x would be transmitted. However these events
correspond toE1(x, t′′), E2(x, t′′) andE4(x, t′′) which
we assume to have not occurred.

• The sender could potentially send packets with sequence
numbersx+1, x+2, ..., x+N−1 before it retransmitted
x, and these wereall lost before the measurement point
could observe them. This corresponds to eventE3(x, t′′).

• One of the packets with sequence numbersx + 1, x +
2, ..., x + N − 1, that the sender could potentially send
before retransmittingx, made it to the measurement point.
Let p′ be the first of these packets. Ifp′ is reordered
in position with p by the channel daemon then the
retransmitted packetp would not be considered to be OoS
by the measurement point. This is eventE5(x, t′′).

Hence, we have shown that withGB(N) a retransmitted or
reordered packet is not detected at the measurement point only
if one of the eventsE1− E5 occurs for any value ofN .

¤
To summarize, using SPIN together with formal reasoning

we have uncovered all cases in which the measurement point
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Fig. 7. Recovery through Fast Retransmit inFastRetx(4), dupacks = 2

can not detect packet retransmissions and reorderings as out-
of-sequence packets.

VII. E XTENSIONS TOGB(N)

We now consider extensions toGB(N) that more closely
capture the behavior of TCP. We name this extended protocol
FastRetx(N). Just as inGB(N), theFastRetx(N) sender
has a fixed window, and can haveN packets outstanding at
any point of time. However, there are two crucial differences.
First, theFastRetx(N) receiver has a buffer of sizeN , and
also accepts and stores packets that do not arrive in order.
The receipt of these packets triggers an acknowledgement
that cumulativelyspecifies the packets received in order at
the receiver. The second difference lies in how the sender
detects and recovers from packet loss. Say a packet is dropped
by the channel. As subsequent packets arrive at the receiver,
they are buffered and triggerduplicate ACKs for the lost
packet. When the sender receives a certain threshold (referred
as thedupackthreshold) worth of such duplicate ACKs, it goes
ahead and retransmits the packet indicated to be lost by these
duplicate ACKs. If this retransmission subsequently arrives at
the receiver, it responds with a new ACK for the maximum
sequence number it has received in sequence, and the sender
continues with its normal transmission. In some cases however,
if several packets are lost within a window, then the required
number of duplicate ACKs may not be generated by the
receiver or the ACKs maybe lost before reaching the sender.
In this case, the sender times out and, just as inGB(N),
retransmits the entire window of packets starting from the
first unacknowledged packet. A Promela implementation of
FastRetx(N) can be found in [12].

We have implemented a model of theFastRetx(N) pro-
tocol in SPIN. We verified this model forN = 4 and the
duplicate ACK threshold,dupack = 2. In our network model
we allow losses before and after the measurement point,
reorderings before the measurement point and ACK losses
between the receiver and the sender. We examined the cases
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under which retransmissions and reorderings are not detected
as out-of-sequence packets at the measurement point, and our
observations are summarized below:

1) SPIN again uncovered scenarios equivalent to events
E3(x, t′),E4(x, t′) and E5(x, t′) (described for the
GB(N) protocol), that result in a retransmitted packet to
be not detected as out-of-sequence at the measurement
point.

2) In GB(N), for any packet with sequence numberx,
if the first packet in the window with respect to this
packet (namely the sequence numberx − N + 1) is
lost or reordered, then the sender’s window does not
move beyond sequence numberx. Thus, if the packet
with sequence numberx is lost before the measure-
ment point then its subsequent retransmission is not
detected to be out-of-sequence - this constitutes events
E1(x, t′) andE2(x, t′) for theGB(N) protocol. In the
FastRetx(N) protocol, since an out-of-order packet is
buffered and eventually acknowledged, we observe that
the reordering of sequence numberx−N + 1 does not
impact the advancement of the sender’s window beyond
x. Hence, there is no event equivalent toE2(x, t′′) in
FastRetx(N). Moreover, we found that even if the
packet with sequence numberx − N + 1 is dropped,
if the loss of this packet is detected through the fast
retransmit mechanism, the sender’s windowcan move
beyond sequence numberx. We explain this with an
example illustrated in Figure 7. As shown in the figure,
the packet with sequence number1 is dropped, and also
sequence number4 is lost before the measurement point.

When sequence numbers2 and3 arrive at the receiver,
they trigger duplicate ACKs for sequence number1.
This results in a fast retransmit of sequence number1,
and subsequently a new ACK for4. The sender now
responds with twonewpackets with sequence numbers
5 and 6 (i.e. its window has now advanced beyond4).
When these packets are received, since4 has still not
been received, they again trigger duplicate ACKS, and
sequence number4 is finally retransmitted. However,
4 is now detected to be out-of-sequence (because the
measurement point has seen sequence numbers> 4),
unlike in GB(N).
To summarize, suppose a packet(x, t′) is lost before the
measurement point, and also the packet with sequence
numberx − N + 1 is dropped. Now,only if sequence
numberx−N +1 is not successfully retransmitted (and
acknowledged) using the fast retransmit mechanism, will
the sender’s window fail to move beyond sequence
numberx. And when this happens, the retransmission
of x will not be detected as out-of-sequence at the
measurement point. We shall refer to this event as
E6(x, t′).

3) SPIN uncovered anew event in which a retransmitted
packet is not detected by the measurement point. This is
a consequence of thesuccessive fast retransmitevent [7]
that occurs as a result of the receiver sending multi-
ple duplicate ACKs upon receiving packets that it has
already buffered. As illustrated in Figure 8, sequence
number1 is lost, and retransmitted by the sender after
receiving duplicate ACKs generated by the arrival of
sequence numbers2, 3 and4 at the receiver. However,
the retransmitted packet1 is dropped again, triggering
a timeout event and subsequent retransmission of all
sequence numbers1− 4 by the sender. Upon receiving
these packets, the receiver responds with an ACK for
sequence number5 (since it has already received and
buffered sequence numbers2−4). The sender transmits
5 after receiving the first of these new ACKs, however,
this packet is dropped before the measurement point.
The following three ACKs for5 are then interpreted as
duplicate ACKs by the sender and it again retransmits5.
This retransmission is not detected to be out-of-sequence
by the measurement point, since the sender did not send
any new packets after the initial transmission of5. We
refer to this event asE7(x, t′′).

We observed these events forN = 4, for theFastRetx(N)
protocol. We now show that these are the only events that
result in a retransmission or a reordered packet to be not
identified as out-of-sequence at the measurement point, for
any value ofN .

Theorem 3:Suppose aretransmittedor reordered packet
sent with sequence numberx at time t′′ using the
FastRetx(N) protocol, for anyN , arrives at measurement
point at time t. Also suppose that none of the events
{E3(x, t′′), E4(x, t′′), E5(x, t′′), E6(x, t′′), E7(x, t′′)} have oc-
curred, then the propertyP (x, t, t′′) will hold true.



Proof: Once again, our proof is by contradiction,
i.e. we initially assume that none of the events
{E3(x, t′′), E4(x, t′′), E5(x, t′′), E6(x, t′′), E7(x, t′′)} has
occurred, and that a retransmission or a reordered packet
has arrived at the measurement, butP (x, t, t′′) is false. This
leads to a contradiction, hence one of the events in the above
described set must have occurred.

If P (x, t, t′′) is false, the measurement point has not seen
any packet with sequence numberx′ such thatx ≤ x′. This
implies thatp has to be a retransmission, since if it had been a
reordered packet then a packet with a sequence number greater
thanx must have appeared at the measurement point beforet.
Now, the only ways in which the measurement point could not
observe a packet with sequence number greater or equal tox
between the original transmission of a packet with sequence
numberx and this retransmissionp could be due to one of the
following:

• The sender couldnot sendany packets with a sequence
numberx′ greater thanx since the original transmission
of sequence numberx. Since we assume the sender has
always data to send, this can happen only if the sender
has not seen an acknowledgment for any of theN − 1
packets sent previous tox. In order for this to occur,
either of the following eventsmusthave occurred:

– the first packet of the window with respect to se-
quence numberx, i.e. the packet with sequence
numberx′′ = x − N + 1 was lost in the channel,
and the sender could not recover from the loss
using the fast retransmit mechanism. Since, if the
sequence numberx − N + 1 had been successfully
retransmitted using the fast retransmit mechanism,
the sender’s window would have moved beyondx,
before retransmittingx.

– for all packets with sequence numbers{x − N +
1, x − N + 2, ..., x − 1}, either the packet is lost,
or if it triggers an ACK that acknowledges sequence
numberx−N + 1, then this ACK is lost.

Either of these events would freeze the advancement
of the right edge of the sender window beyondx, and
no new packets with sequence number greater thanx
would be transmitted. However these events correspond
to E4(x, t′′) andE6(x, t′′) which we assume to have not
occurred.

• The sender could potentially send packets with sequence
numbersx+1, x+2, ..., x+N−1 before it retransmitted
x, and these wereall lost before the measurement point
could observe them; this corresponds to eventE3(x, t′′).

• One of the packets with sequence numbersx + 1, x +
2, ..., x + N − 1, that the sender could potentially send
before retransmittingx, made it to the measurement point.
Let p′ be the first of these packets. Ifp′ is reordered
in position with p by the channel daemon then the
retransmitted packetp would not be considered to be OoS
by the measurement point. This is eventE5(x, t′′).

• The sender retransmitted packet sequence numberx be-

fore it could transmit any packet with sequence number
> x. Because of Assumption 3 (stated in Section V),
this retransmission ofx cannotbe triggered by a timeout
- since the sender has always data to send, and must be
able to send new packets in the period between the initial
transmission ofx and the triggering of the retransmission
timer. Hence,x much have been retransmitted due to
the arrival of duplicate ACKs. Also, the duplicate ACKs
must be triggered by packets sent prior to the initial
transmission ofx, since the sender did not send any
new packets before it retransmittedx. If packets sent
prior to sequence numberx trigger ACKs for x at the
receiver, this must be because the sequence numbers of
these packets have already been received, and the ACKs
for x are an indication that the receiver expects to see
a new sequence numberx. This is a case ofsuccessive
fast retransmit, and the retransmission ofx triggered by
this event will not be detected as out-of-sequence. This
corresponds to eventE7(x, t′′).

Hence, we have shown that a retransmitted or reordered
packet is not detected at the measurement point only if either
of the above mentioned events occur for any value ofN of
the FastRetx(N) protocol.

¤
VIII. I MPLICATIONS FORTCP

We have verified the classification rules with the end-
points implementing simple protocols such asGB(N) and
FastRetx(N). We now discuss the implications of our ob-
servations if the end-points implement the TCP protocol.
We focus onFastRetx(N) since by design it more closely
follows TCP behavior, and apply what we have learned from
the verification of classification rules for this protocol to two
flavors of TCP, namely TCP Reno and NewReno.

We first note that with TCP Reno, when events
E3(x, t′), E4(x, t′′), E5(x, t′′)E6(x, t′′) occur, a retransmit-
ted packet will not be detected by the measurement point.
Figure 9 illustrates these cases, except forE7(x, t′′), for TCP
Reno1. We also observe that each of these events involves the
timeout event at the sender. This implies that the sender behav-
ior described in these cases is independent of the TCP flavor -
since all TCP congestion control flavors behave in exactly the
same manner subsequent to a timeout event. Thus, the occur-
rence of the eventsE3(x, t′), E4(x, t′′), E5(x, t′′)E6(x, t′′)
would lead to the non-detection of a retransmitted packet even
for the TCP New Reno protocol. If the TCP end-points use the
SACK option, then by examining the SACK blocks sent by
the receiver, a TCP sender can infer exactly which packets are
lost in the channel. A TCP sender, that uses the SACK option,
will never misinterpret duplicate ACKs (for a new packet)
as indicators of packet loss, and hence can never undergo a
successive fast retransmit. Thus, eventE7(x, t′′) can not occur
if the end-points use TCP SACK.

1The sequence of events leading toE7 are intricate, and we exclude the
example due to space limitations, however it is presented in the extended
version of this paper.
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A TCP sender has a dynamically changing window
(namely, the additive increase, multiplicative decrease con-
gestion avoidance scheme). This is the primary difference
that distinguishes a TCP sender from aFastRetx(N)
sender. However, as we have proven in Sections VI and VII
about the behavior ofGB(N) and FastRetx(N) pro-
tocols, the value of the sender window has no impact
on the measurement point’s ability to detect packet re-
transmissions and reorderings. Thus we believe, given that
FastRetx(N) captures TCP’s loss recovery mechanism,
that events E3(x, t′), E4(x, t′′), E5(x, t′′), E6(x, t′′), (and
E7(x, t′′) if the end-points do not use SACK) are the only
events for which the classification rules do not detect re-
transmitted or reordered packets. In future work, we plan to
implement the differences betweenFastRetx(N) and TCP
protocols, and carry out a formal verification of TCP to
confirm this conjecture.

IX. CONCLUSIONS& FUTURE WORK

In this work, we have proposed a new approach, combining
model checking techniques and formal reasoning, to verify
the correctness of passive measurements based inference tech-
niques. We analyze the problem of detecting and classifying
packet retransmissions and reorderings by a passive monitor
in an end-end path. Using the SPIN model checker and by
reasoning about network and protocol behavior, we unearth
all possible cases in which such packets go undetected at the
passive monitor. A natural next step for this work would be to
use the insights gained through the formal verification of the
inference rules to design new techniques that can capture all
packet retransmissions and reorderings. One possible approach
would be to drive inferences based on the most likely set of
events in the network, using ideas from the body of work
on passive testing[17], [16] of protocols. While in this work
we have considered a specific passive measurements based
inference problem, we believe our approach can be applied
to other measurement scenarios with similar challenges and
constraints.
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