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Motivation

• Developing new network monitoring apps is 
unnecessarily time-consuming

• Familiar development steps
• Need deep understanding of data sets 

(including details of the capture devices)

• Need to develop tools to extract information of interest

• Need to evaluate accuracy and resolution of data 
(e.g., timestamps, completeness of data, etc.)

• …and all this happens before one can really 
get started!



March 30th, 2006 PAM 20063

Motivation (cont’d)

• Developers tend to find shortcuts
• Quickly assemble bunch of ad-hoc scripts

• Not “designed-to-last”

• Well known consequences
hard to debug
hard to distribute
hard to reuse
hard to validate  
suboptimal performance

• End result: many papers, very little code
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Can we solve this problem by design? 

• Yes, and it has been done before in other areas.

• Define declarative language and data model for 
network monitoring

• What is specific to network measurements? 
• Large variety of networking devices (i.e. potential data 

sources) such as NIC cards, capture cards, routers, APs, …

• Need native support for distributed queries to correlate 
observations from a large number of data sources.

• Data sets tend to be extremely large for which data 
shipping is not feasible.
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Existing Solutions

• AT&T’s GigaScope

• UC Berkeley’s TelegraphCQ and Pier

• Common approach (stream databases):
• Define subset of SQL adding new operators 

(e.g., ‘window’ for time bins of continuous query)

• Gigascope supports hardware offloading by 
static analysis of the GSQL query
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Benefits and Limitations

+ Decouple what is done from how it is done. 

+ Amenable to optimizations in the implementation

- Limited expressiveness. 

- Need workaround to implement what is not in the 
language losing the advantages above

- Entry barrier for new users is relatively high. 

- Existing solutions not designed with a variety of 
devices in mind (mainly packet capture)
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Alternative Design: The CoMo project

• Users write “monitoring plugins”
• Shared objects with predefined entry points.

• Users can write code in C or whatever they like that can 
generate the shared objects.

• The platform provides
• one single, extensible, network data model.

• support for a wide variety of network devices.

• abstraction of monitoring device internals.

• enforcement of programming structure in the plug-ins to 
allow for optimization.
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Design Concepts

• Network Data Model
• or, “how to find the data”

• Programming Model
• or, “how to process and manipulate the data”

• Hardware Abstraction and Data Management
• or, “how to optimize for performance”
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Network Data Model

• Unified data model with quality and lineage information. 

• Allows the definition of ad-hoc metadata (by users)

• Starting point is the IP packet

• Add other protocol headers (MAC, transport layer, etc.)

• Add other information that is capture device specific (e.g., PHY
information, RF information, routing information)

• Add per packet meta information (e.g., flow-level information) 
and per stream meta information (e.g., accuracy of timestamps)

• Allow for specifying new fields by name in any packet
(e.g., “snort alert id”, “flow bytecount”, etc.) 
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Network Data Model (cont’d)

• Develop software sniffers
• understand native format of each device and translate to 

our common data model

• support so far for PCAP, DAG, NetFlow, sFlow, 802.11 
w/radio, any CoMo monitoring plug-in. 

• Sniffers describe the packet stream they generate
• Provide multiple templates if possible

• Describe the fields in the schema that are available

• Plug-ins just have to describe what they are interested in 
and the system finds the most appropriate matching
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Network Data Model (cont’d)

• Example: Cisco NetFlow sniffer
• Regenerate packet stream from flow data

• Augment packets with routing information (such as AS number, 
network prefix, etc)

• Meta description will tell that 5-tuple information is there plus 
averaged packet sizes and timestamps (with accuracy equal to 
flow activity timer)

• If re-processed, obtain same flow records

original packet streamoriginal packet stream
startstart endend

netflow recordsnetflow recordsflow record #1 (7 pkts)flow record #1 (7 pkts) flow record #2 (5 pkts)flow record #2 (5 pkts)

sniffer packet stream #1sniffer packet stream #1
packet timestamp resolutionpacket timestamp resolution

sniffer packet stream #2sniffer packet stream #2
[add packet/byte count information in per packet meta field][add packet/byte count information in per packet meta field]
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Programming Model

• Application modules made of two components: 
<filter>:<monitoring function>

• Filter run by the core, monitoring function contained in the 
plug-in written by the user

• set of pre-defined callbacks to perform simple primitives 

• e.g., update(), export(), store(), load(), print(), replay()

• each callback is a closure (i.e., the entire state is defined in the 
call) so that it can optimized in isolation and executed anywhere. 

• No explicit knowledge of the source of the packet stream
• Modules specify what it needs in the stream and access fields via 

standard macros 

• e.g., IP(src), RADIO(snr), NF(src_as)
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Hardware Abstraction

• Goals: scalability and distributed queries
• support large number of data sources and high data rates

• support a heterogeneous environment (clients, APs, packet 
sniffers, etc.)

• allow applications to perform partial query computations in 
remote locations

• To achieve this we…
• hide to modules where they are running 

• enforce a programming structure

• … basically try to partially re-introduce declarative queries
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Hardware Abstraction (cont’d)

• EXPORT/STORAGE can be replicated for load balancing 

• CAPTURE is the main choke point
• It periodically discards all state to reduce overhead and maintain 

a relative stable operating point
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Distributed queries

• Modules behave as software sniffers themselves

• replay() callback to generate a packet stream out of module 
stored data

• e.g., snort module generates stream of packets labeled with the 
rule they match; module B computes correlation of alerts

• This way computations can be distributed but also modules 
can be pipelined (to reduce the load on CAPTURE)

Aupdate() replay()
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Implementation

• Open source implementation
• running on Linux, FreeBSD, Windows (w/Cygwin)

• running on x86 and ARM architectures

• supports PCAP, DAG, Netflow, sFlow, 802.11 w/radio

• Small set of application modules developed
• Snort-like module for intrusion detection

• Kismet-like module to detect wireless networks

• Classical traffic statistics modules

• Support for continuous queries and triggers
• Queries in the form “http://host:port/?module=...”

• Developed graphical interface for queries (modules may send a 
gnuplot script with the print() callback)



March 30th, 2006 PAM 200617

Early experiences

• Modules are rather simple 
to write and configure

• Kismet 127 C “;”

• Code base is robust. 
Current deployments:

• Running over a GigE link 
with 700 Mbps avg. traffic

• Running with over 180 
modules concurrently

• Running on Stargates using 
Compact Flash for storage 
without any change in the 
modules’ code
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Related Work

• Gigascope [Cranor et al., Sigmod 2003]
• GSQL to describe traffic query and schema. Possible to automatically 

offload to hardware some functions.

• FLAME [Anagnostakis et al., IWAN 2002]
• Focus on safety and trust of in-kernel modules for network monitoring

• Aurora [Carney et al., VLDB 2002]
• Handle (distributed) continuous queries on data streams. Seven 

operators and automated load shedding techniques

• Pandora [Patarin et al., Usenix 2000]
• Construct dependency graph between individual monitoring components 

to perform a complex monitoring function

• Scriptroute [Spring et al., Usenix 2003]
• Focus on making active measurement simpler to specify and run safely 

on a distributed architecture
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Conclusions and future work

• CoMo: an open platform for fast prototyping 
network measurement methods

• On-going and future work include
• Enrich API adding more libraries and sniffers

• Improve performance and add support for active storage

• Support for GSQL or TelegraphCQ

• Add static analysis of modules’ code safety

• Load Shedding
–Use short-term resource usage prediction models to graceful 

degrade performance in presence of traffic anomalies
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More info and source code at
http://como.intel-research.net

or send your questions to
como-users@lists.sourceforge.net
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