
Fast Prototyping of
Network Data Mining Applications

Gianluca Iannaccone
Intel Research Cambridge

March 30th, 2006 PAM 20062

Motivation

• Developing new network monitoring apps is
unnecessarily time-consuming

• Familiar development steps
• Need deep understanding of data sets

(including details of the capture devices)

• Need to develop tools to extract information of interest

• Need to evaluate accuracy and resolution of data
(e.g., timestamps, completeness of data, etc.)

• …and all this happens before one can really
get started!

March 30th, 2006 PAM 20063

Motivation (cont’d)

• Developers tend to find shortcuts
• Quickly assemble bunch of ad-hoc scripts

• Not “designed-to-last”

• Well known consequences
hard to debug
hard to distribute
hard to reuse
hard to validate
suboptimal performance

• End result: many papers, very little code

March 30th, 2006 PAM 20064

Can we solve this problem by design?

• Yes, and it has been done before in other areas.

• Define declarative language and data model for
network monitoring

• What is specific to network measurements?
• Large variety of networking devices (i.e. potential data

sources) such as NIC cards, capture cards, routers, APs, …

• Need native support for distributed queries to correlate
observations from a large number of data sources.

• Data sets tend to be extremely large for which data
shipping is not feasible.

March 30th, 2006 PAM 20065

Existing Solutions

• AT&T’s GigaScope

• UC Berkeley’s TelegraphCQ and Pier

• Common approach (stream databases):
• Define subset of SQL adding new operators

(e.g., ‘window’ for time bins of continuous query)

• Gigascope supports hardware offloading by
static analysis of the GSQL query

March 30th, 2006 PAM 20066

Benefits and Limitations

+ Decouple what is done from how it is done.

+ Amenable to optimizations in the implementation

- Limited expressiveness.

- Need workaround to implement what is not in the
language losing the advantages above

- Entry barrier for new users is relatively high.

- Existing solutions not designed with a variety of
devices in mind (mainly packet capture)

March 30th, 2006 PAM 20067

Alternative Design: The CoMo project

• Users write “monitoring plugins”
• Shared objects with predefined entry points.

• Users can write code in C or whatever they like that can
generate the shared objects.

• The platform provides
• one single, extensible, network data model.

• support for a wide variety of network devices.

• abstraction of monitoring device internals.

• enforcement of programming structure in the plug-ins to
allow for optimization.

March 30th, 2006 PAM 20068

Design Concepts

• Network Data Model
• or, “how to find the data”

• Programming Model
• or, “how to process and manipulate the data”

• Hardware Abstraction and Data Management
• or, “how to optimize for performance”

March 30th, 2006 PAM 20069

Network Data Model

• Unified data model with quality and lineage information.

• Allows the definition of ad-hoc metadata (by users)

• Starting point is the IP packet

• Add other protocol headers (MAC, transport layer, etc.)

• Add other information that is capture device specific (e.g., PHY
information, RF information, routing information)

• Add per packet meta information (e.g., flow-level information)
and per stream meta information (e.g., accuracy of timestamps)

• Allow for specifying new fields by name in any packet
(e.g., “snort alert id”, “flow bytecount”, etc.)

March 30th, 2006 PAM 200610

Network Data Model (cont’d)

• Develop software sniffers
• understand native format of each device and translate to

our common data model

• support so far for PCAP, DAG, NetFlow, sFlow, 802.11
w/radio, any CoMo monitoring plug-in.

• Sniffers describe the packet stream they generate
• Provide multiple templates if possible

• Describe the fields in the schema that are available

• Plug-ins just have to describe what they are interested in
and the system finds the most appropriate matching

March 30th, 2006 PAM 200611

Network Data Model (cont’d)

• Example: Cisco NetFlow sniffer
• Regenerate packet stream from flow data

• Augment packets with routing information (such as AS number,
network prefix, etc)

• Meta description will tell that 5-tuple information is there plus
averaged packet sizes and timestamps (with accuracy equal to
flow activity timer)

• If re-processed, obtain same flow records

original packet streamoriginal packet stream
startstart endend

netflow recordsnetflow recordsflow record #1 (7 pkts)flow record #1 (7 pkts) flow record #2 (5 pkts)flow record #2 (5 pkts)

sniffer packet stream #1sniffer packet stream #1
packet timestamp resolutionpacket timestamp resolution

sniffer packet stream #2sniffer packet stream #2
[add packet/byte count information in per packet meta field][add packet/byte count information in per packet meta field]

March 30th, 2006 PAM 200612

Programming Model

• Application modules made of two components:
<filter>:<monitoring function>

• Filter run by the core, monitoring function contained in the
plug-in written by the user

• set of pre-defined callbacks to perform simple primitives

• e.g., update(), export(), store(), load(), print(), replay()

• each callback is a closure (i.e., the entire state is defined in the
call) so that it can optimized in isolation and executed anywhere.

• No explicit knowledge of the source of the packet stream
• Modules specify what it needs in the stream and access fields via

standard macros

• e.g., IP(src), RADIO(snr), NF(src_as)

March 30th, 2006 PAM 200613

Hardware Abstraction

• Goals: scalability and distributed queries
• support large number of data sources and high data rates

• support a heterogeneous environment (clients, APs, packet
sniffers, etc.)

• allow applications to perform partial query computations in
remote locations

• To achieve this we…
• hide to modules where they are running

• enforce a programming structure

• … basically try to partially re-introduce declarative queries

March 30th, 2006 PAM 200614

Hardware Abstraction (cont’d)

• EXPORT/STORAGE can be replicated for load balancing

• CAPTURE is the main choke point
• It periodically discards all state to reduce overhead and maintain

a relative stable operating point

March 30th, 2006 PAM 200615

Distributed queries

• Modules behave as software sniffers themselves

• replay() callback to generate a packet stream out of module
stored data

• e.g., snort module generates stream of packets labeled with the
rule they match; module B computes correlation of alerts

• This way computations can be distributed but also modules
can be pipelined (to reduce the load on CAPTURE)

Aupdate() replay()

March 30th, 2006 PAM 200616

Implementation

• Open source implementation
• running on Linux, FreeBSD, Windows (w/Cygwin)

• running on x86 and ARM architectures

• supports PCAP, DAG, Netflow, sFlow, 802.11 w/radio

• Small set of application modules developed
• Snort-like module for intrusion detection

• Kismet-like module to detect wireless networks

• Classical traffic statistics modules

• Support for continuous queries and triggers
• Queries in the form “http://host:port/?module=...”

• Developed graphical interface for queries (modules may send a
gnuplot script with the print() callback)

March 30th, 2006 PAM 200617

Early experiences

• Modules are rather simple
to write and configure

• Kismet 127 C “;”

• Code base is robust.
Current deployments:

• Running over a GigE link
with 700 Mbps avg. traffic

• Running with over 180
modules concurrently

• Running on Stargates using
Compact Flash for storage
without any change in the
modules’ code

March 30th, 2006 PAM 200618

Related Work

• Gigascope [Cranor et al., Sigmod 2003]
• GSQL to describe traffic query and schema. Possible to automatically

offload to hardware some functions.

• FLAME [Anagnostakis et al., IWAN 2002]
• Focus on safety and trust of in-kernel modules for network monitoring

• Aurora [Carney et al., VLDB 2002]
• Handle (distributed) continuous queries on data streams. Seven

operators and automated load shedding techniques

• Pandora [Patarin et al., Usenix 2000]
• Construct dependency graph between individual monitoring components

to perform a complex monitoring function

• Scriptroute [Spring et al., Usenix 2003]
• Focus on making active measurement simpler to specify and run safely

on a distributed architecture

March 30th, 2006 PAM 200619

Conclusions and future work

• CoMo: an open platform for fast prototyping
network measurement methods

• On-going and future work include
• Enrich API adding more libraries and sniffers

• Improve performance and add support for active storage

• Support for GSQL or TelegraphCQ

• Add static analysis of modules’ code safety

• Load Shedding
–Use short-term resource usage prediction models to graceful

degrade performance in presence of traffic anomalies

March 30th, 2006 PAM 200620

More info and source code at
http://como.intel-research.net

or send your questions to
como-users@lists.sourceforge.net

	Fast Prototyping of Network Data Mining Applications
	Motivation
	Motivation (cont’d)
	Can we solve this problem by design?
	Existing Solutions
	Benefits and Limitations
	Alternative Design: The CoMo project
	Design Concepts
	Network Data Model
	Network Data Model (cont’d)
	Network Data Model (cont’d)
	Programming Model
	Hardware Abstraction
	Hardware Abstraction (cont’d)
	Distributed queries
	Implementation
	Early experiences
	Related Work
	Conclusions and future work
	More info and source code athttp://como.intel-research.netor send your questions to como-users@lists.sourceforge.net

