Reformulating the monitor placement problem: Optimal Network-wide Sampling

Gianluca lannaccone Intel Research @ Cambridge

Joint work with: G. Cantieni, P. Thiran (EPFL) C. Barakat (INRIA), C. Diot (Intel)

Motivation

- Router-embedded monitoring functionalities are commonly used in small and large ISPs
 - e.g., Cisco's NetFlow
 - provide visibility over the entire network
 - level of details is "good enough" (for now...)

• Challenge:

how to configure a network-wide monitoring infrastructure with hundreds of viewpoints?

Why is it a hard challenge?

- "Configure" means setting the sampling rates on all individual interfaces
- Sampling rates needs to be low to reduce stress on routers
- Aggregate volume of information collected from the routers should be kept under control
- Measurement task unknown a priori and a single fixed layout does not perform well
 - e.g., PoP-level traffic matrix estimation
 all edge routers with low sampling rates.
 - e.g., focusing on specific prefix "below the radars"
 few monitors, relatively higher sampling rates.

Our objective

- Given a measurement task and a target accuracy, find a method that:
 - sets the sampling rates on all interfaces
 - guarantees optimal use of resources (in terms of processed packets)
 - requires minimum configuration
 - can adapt quickly to changes in the traffic
- Method should apply to a general class of measurement tasks

Picking a measurement task...

- Estimate amount of traffic flowing among a subset of origin-destination pairs
- Common task for traffic engineering apps

Problem formulation

- Effective sampling rate approximated by sum of sampling rates
- All constraints are linear and define a convex solution space
- Unique maximizer exists as long as M() is strictly concave

Algorithm

Solve system defined by KKT conditions

- select set active/inactive constraints (equivalent to switching off/on a link monitor)
- use gradient projection method to explore space
- use KKT conditions to check optimality of solution
- Selection of active/inactive constraints is NPhard → no guarantee of convergence
- Limit algorithm runs to 2,000 iterations
 > 98.6% optimum found (for our task)

The utility function

- Measures quality of sampling an OD pair
- "Well behaved" to make the algorithm run fast
- Mean square relative error good candidate
 - $E[SRE] = E[((X/\rho S) / S)^2]$
 - actually 1 E[SRE]

mean square relative "accuracy"

• $M(\rho) = 1 - E[1/S] * (1/\rho - 1);$

- minor tweaking to force it to be zero when $\rho = 0$

needs E[1/S] where S is the size of the OD pair

Evaluation

- Consider NetFlow data from GEANT
 - Collected using Juniper's Traffic Sampling
 - 1/1000 periodic sampling
 - We scale the measurement by 1000 (we just need a realistic mix of OD pair sizes)
- Results based on one run of the algorithm
 - One five minute snapshot of the network traffic
 - Compute OD pair sizes and link loads
 - Assume E[1/S] is known

Results highlights

- Measuring relative accuracy
 - Defined as one minus relative error (not squared)
 - Allows to validate manipulation of utility function and the use of effective sampling rate
- Accuracy is in the range 89-99%
 - Worst accuracy for JANET LU (it has just 20 pkts/sec)
- Measurement spread across 10 links
- Max sampling rates is 0.92% (lightly loaded links)
 - Most links are around 0.1%
 - No OD pair is monitored on more than two links
 - Effective sampling rate (sum of sampling rates) is a good approximation of actual sampling rate

Comparing to "naive" solutions

- Why not just monitoring JANET access link?
 - All the monitored traffic would be relevant!
 - To achieve same accuracy over all OD pairs we need ~1% sampling rate
 - → 70% more packets are processed
 - It's not always possible to monitor both directions of access links
- Why not just monitoring all UK links?
 - There are just 6 links leaving the UK
 - Straightforward algorithm to set sampling rate (each OD pair is present on just one link), but...

Monitoring all UK links

• Why does our method work better?

 It looks across the entire network to find where small OD pairs manifest themselves without hiding behind large flows

Deployment on real networks

- Two aspects need to be addressed
- What prior knowledge about the network does the method need?
 - need routing information
 - need estimate of E[1/S] for each OD pair

bootstrapping phase

- How does the method perform over time?
 - time of day effect change E[1/S] and U_i
 - routing event change path taken by OD pairs
 - adapt sampling rates

Bootstrapping phase

Performance over time

Performance over time (cont'd)

Performance over time (cont'd)

int_{el}.

Adapting to traffic fluctuations

- Three different cases that require different approaches
- Link load increases
 - more sampled packets, exceeding capacity
 - → find new sampling rates to enforce target capacity
- OD pair decreases in volume
 - poor accuracy because of bad E[1/S] estimate
 - \rightarrow adapt capacity Θ to keep target accuracy
- OD pair traverses different set of links
 - missing entire OD pair
 - \rightarrow monitor routing updates and "re-bootstrap" the algorithm

Fluctuations in OD pairs

- Monitoring accuracy of OD pairs
 - This is not trivial. Accuracy is not known.
 - Need to estimate E[1/S] from sampled data.
 - Use simplest method \rightarrow Current size of OD pair
- Compute new sampling rates when estimated accuracy drops below target
- If the estimated accuracy is still below target, increase capacity by 10%
- Decrease capacity if estimated accuracy is above target for more than one hour

Fluctuations in OD pairs (cont'd)

int_{el}.

Fluctuations in OD pairs (cont'd)

int_.

21

Fluctuations in OD pairs (cont'd)

int_{el}.

Related work

- Passive monitoring
 - Suh et al, "Locating Network Monitors...", Infocom 2005
 - two phase approach: select the monitors then optimize sampling
 - near-optimal solutions
- Active monitoring
 - Bejerano, Rastogi, "Robust monitoring of link delays", Infocom 2003
 - Jamin et al., "On the placement of Internet instrumentation", Infocom 2000
- Improving NetFlow
 - Estan et al, "Building a better NetFlow", Sigcomm 2004
 - Baek-Yong et al. "... Adaptive Sampling..."
- TM estimation work
 - really a different problem setting

Conclusion & Future work

- Set sampling rates of a network of monitors.
- General enough framework for large class of measurement tasks
- Working on finding new utility functions
- Looking into using better predictors for E[1/S]
- Open issue How long does it take to reconfigure NetFlow?

