),

The CoMo project:
AN overview

Iintgl.



Motivation

* Prototyping new traffic analysis
methods Is hard!

—System performance strongly depends
on traffic patterns

—Long learning phase to fine tune
neuristic parameters

— Difficult to properly dimension system
without prior knowledge of traffic
characteristics

Iintgl.



Motivatien (cont’d)

* Need for an open network
monitoring infrastructure

—Widely deployed, diverse datasets
—Supports multiple independent users

—Provides a way to quickly implement
the analysis methods

—Abstracts away the internals of the
network monitor

intel.



CoMe design goals

o Support multiple arbitrary traffic queries
on the packet stream
e Arbitrary means that gueries:

— perform any computation on the packet
stream

— run on past traffic data as well as real-time
— are coming from different independent users

 Multiple means that queries:

— compete for resources on the entire
Infrastructure

— may be scheduled to run on several systems
at once

Iintgl.



Related work

e Gigascope (AT&I)

— GSQL to describe traffic query and schema. Possible
to automatically offload to hardware some functions.

e FLAME (UPenn)

— Focus on safety and trust of in-kernel modules for
network monitoring

e Aurora, Borealis (MIT, Brown University)

— Handle (distributed) continuous queries on data
streams

— Seven operators and automated load shedding
techniques

e Scriptroute (UW)

— Focus on making active measurement simpler to
specify and run safely on a distributed architecture

intel.



CoMo System model

* Core processes

— Handle all data movement
(wire 2> memory -2 disk)

— Unified interface to packet streams
(abstracting capture devices)

— Schedule gueries and optimize allocation of
computing resources

— Maintain full packet trace for a window of
time (e.g., 72 hours)

— Provide guery interface and handle user
requests to access results

intel.



Systemimodel (cont’d)

* Querles reside In plug-in modules
— Defined by pair <filter:function>
— Filter executed by core processes

— Function to be applied on the packet stream
specified in set of callbacks

— Callbacks used to access query results too

— Callbacks are closures (i.e. all state is defined In
the call) to allow optimization by core processes

— All state Is maintained by core processes

— Allows to stop/pause/resume modules when
processing resources are scarce

intel.



Systemjarchitecture

Modules

Modules

Modules

packets

data

blocks

<4

Synch;:dhous with
packet stream

match();
update();
real-time
computations
on incoming
packet stream

-USGI' query

tuples |

export();
store();
long-term
analysis and
storage to disk

>

load();
print();
retrieve data from
disk (w/filtering
and indexing)
and format response




Writing guery modules

e Success of system depends on how
simple It Is to write modules

— Kismet module (114 semicolons)
— Top-N destinations (62 semicolons)
— Bytes/Packets Counter (53 semicolons)

 EFach module maintains its own database

— Using store(), load(), print() callbacks

— Storage manager deals with indexing data
and providing fast disk access.

— Database schema known only to the module

intel.



Historieal queries

* Re-use computations made by modules
— (only alternative is to go to packet trace)

* Modules provide a replay() callback

— Runs on the module’s database and
generates a synthetic packet stream

— Comes with a description of the stream

 Core system provides the best match
— Find modules with all needed information

— Choose based on storage size and
processing costs of replay()

intel.

10



Histerical queries (cont’d)

 Replay() allows significant reduction In
disk reads at the cost of CPU cycles

— Assumption is that CPU iIs not scarce while
bandwidth from disk to memory is

* No explicit knowledge of what the two
modules are actually doing!

* This method iIs used today to run on
Dante’s NetFlow data.

— No need to modify queries that operate on
live packet stream

intel.

11



Hardware offload

* Off-loading some module callbacks to
hardware.

 Easy for the filter, hard for callbacks

 Examples

— load() code sent to active storage systems
(e.g., DIAMOND) to search the database
when no Index exists

— If update() Is simple enough it can be
compiled to run directly on an IXP’s
microengine.

intel.

12



Robustness

e Degrade module performance in presence of
traffic anomalies or high query load

— Module chosen based on resource usage

* Gracefully as module resource usage increases
— Delay results (modules runs offline)
— Sample input packet stream
— Last resort: stop the module and resume it later

* Incentives for users to
— Provide efficient implementations
— Ask as few resources as possible

— Implement replay() callback
— If computation is reusable, it has higher priority.

13



Achieving Safety

* Module may use disproportionate amount of
resources

— Same problem with legit modules and anomalous
Incoming traffic

* Module may corrupt other module’s data

— Removing pointer arithmetic would solve the problem
but it’s not feasible

— Use approach similar to FLAME (based on Cyclone)
* Module may break usage policy

— e.g., break anonymization scheme

— Local anonymization is easy to do but not good
enough for most users

— Distributed anonymization still an open problem...

intel.

14



Achieviimg Scalability

* Running on cluster of nodes
—“similar” modules run on same node

Modules Modules Modules

user query
e

packets
tuples |

Aggregation
Long-term
analysis

Synchronous with Periodic User Request-driven
packet stream




Making@iit distributed...

e Demands for gloebal resource management

* Online queries: Optimal Network-wide Sampling

— Select the nodes that need to run a specific module to
minimize the total number of packet processed

— Module’s utility function that depends on the aggregate
sampling rate across the network of monitors

— Optimal algorithm for a class of utility functions

 Retrospective queries: MIND distributed index

— Nodes share and distribute some information on the
traffic they observe

— Query first look in the index to find nodes that may
contain data of interest

— Prototype implemented on PlanetLab

intel.

16



Conclusion

* CoMo Is a platform for fast prototyping
traffic analysis methods

* Implementation publicly available
— Runs on x86 and StrongARM;

— Supports many network capture devices
(DAG, libpcap, Prism2 wireless cards,
NetFlow)

— Full packet capture on Gigabit links
— Four code releases so far...

* Looking for users and sites where to
develop new nodes

Iintgl.

17



More o

Source code available at
http://como.sourceforge.net

como-users@lists.sourceforge.net
for comments, guestions, etc.

Iintgl. T



	The CoMo project:An overview
	Motivation
	Motivation (cont’d)
	CoMo design goals
	Related work
	CoMo System model
	System model (cont’d)
	System architecture
	Writing query modules
	Historical queries
	Historical queries (cont’d)
	Hardware offload
	Robustness
	Achieving Safety
	Achieving Scalability
	Making it distributed...
	Conclusion
	More info

