
The CoMo project:The CoMo project:
An overviewAn overview

22

MotivationMotivation

Prototyping new traffic analysis Prototyping new traffic analysis
methods is hard!methods is hard!
––System performance strongly depends System performance strongly depends

on traffic patterns on traffic patterns

––Long learning phase to fine tune Long learning phase to fine tune
heuristic parametersheuristic parameters

––Difficult to properly dimension system Difficult to properly dimension system
without prior knowledge of traffic without prior knowledge of traffic
characteristicscharacteristics

33

Motivation (contMotivation (cont’’d)d)

Need for an open network Need for an open network
monitoring infrastructuremonitoring infrastructure
––Widely deployed, diverse datasetsWidely deployed, diverse datasets

––Supports multiple independent usersSupports multiple independent users

––Provides a way to quickly implement Provides a way to quickly implement
the analysis methodsthe analysis methods

––Abstracts away the internals of the Abstracts away the internals of the
network monitornetwork monitor

44

CoMo design goalsCoMo design goals
Support Support multiple arbitrary traffic queriesmultiple arbitrary traffic queries
on the packet streamon the packet stream
ArbitraryArbitrary means that queries:means that queries:
–– perform any computation on the packet perform any computation on the packet

streamstream
–– run on past traffic data as well as realrun on past traffic data as well as real--timetime
–– are coming from different independent usersare coming from different independent users

MultipleMultiple means that queries: means that queries:
–– compete for resources on the entire compete for resources on the entire

infrastructureinfrastructure
–– may be scheduled to run on several systems may be scheduled to run on several systems

at onceat once

55

Related workRelated work
GigascopeGigascope (AT&T)(AT&T)
–– GSQL to describe traffic query and schema. Possible GSQL to describe traffic query and schema. Possible

to automatically offload to hardware some functions.to automatically offload to hardware some functions.

FLAMEFLAME ((UPennUPenn))
–– Focus on safety and trust of inFocus on safety and trust of in--kernel modules for kernel modules for

network monitoringnetwork monitoring

AuroraAurora, , BorealisBorealis (MIT, Brown University)(MIT, Brown University)
–– Handle (distributed) continuous queries on data Handle (distributed) continuous queries on data

streamsstreams
–– Seven operators and automated load shedding Seven operators and automated load shedding

techniquestechniques

ScriptrouteScriptroute (UW)(UW)
–– Focus on making active measurement simpler to Focus on making active measurement simpler to

specify and run safely on a distributed architecturespecify and run safely on a distributed architecture

66

CoMo System modelCoMo System model

Core processes Core processes
–– Handle all data movement Handle all data movement

((wire wire memory memory diskdisk))

–– Unified interface to packet streams Unified interface to packet streams
(abstracting capture devices)(abstracting capture devices)

–– Schedule queries and optimize allocation of Schedule queries and optimize allocation of
computing resourcescomputing resources

–– Maintain full packet trace for a window of Maintain full packet trace for a window of
time (e.g., 72 hours)time (e.g., 72 hours)

–– Provide query interface and handle user Provide query interface and handle user
requests to access resultsrequests to access results

77

System model (contSystem model (cont’’d)d)

Queries reside in plugQueries reside in plug--in modulesin modules
–– Defined by pair <Defined by pair <filter:functionfilter:function>>

–– Filter executed by core processesFilter executed by core processes

–– Function to be applied on the packet stream Function to be applied on the packet stream
specified in set of specified in set of callbackscallbacks
–– CallbacksCallbacks used to access query results tooused to access query results too

–– CallbacksCallbacks are closures (i.e. all state is defined in are closures (i.e. all state is defined in
the call) to allow optimization by core processesthe call) to allow optimization by core processes

–– All state is maintained by core processesAll state is maintained by core processes
–– Allows to stop/pause/resume modules when Allows to stop/pause/resume modules when

processing resources are scarceprocessing resources are scarce

88

System architectureSystem architecture

match(); match();
update();update();
realreal--timetime

computationscomputations
on incoming on incoming

packet streampacket stream

export(); export();
store();store();

longlong--term term
analysis andanalysis and

storage to diskstorage to disk

load(); load();
print();print();

retrieve data fromretrieve data from
disk (w/filtering disk (w/filtering

and indexing)and indexing)
and format responseand format response

99

Writing query modulesWriting query modules

Success of system depends on how Success of system depends on how
simple it is to write modulessimple it is to write modules
–– Kismet module (Kismet module (114114 semicolons)semicolons)

–– TopTop--N destinations (N destinations (6262 semicolons)semicolons)

–– Bytes/Packets Counter (Bytes/Packets Counter (5353 semicolons)semicolons)

Each module maintains its own database Each module maintains its own database
–– Using store(), load(), print() Using store(), load(), print() callbackscallbacks

–– Storage manager deals with indexing data Storage manager deals with indexing data
and providing fast disk access. and providing fast disk access.

–– Database schema known only to the module Database schema known only to the module

1010

Historical queriesHistorical queries

ReRe--use computations made by modules use computations made by modules
–– (only alternative is to go to packet trace)(only alternative is to go to packet trace)

Modules provide a replay() Modules provide a replay() callbackcallback
–– Runs on the moduleRuns on the module’’s database and s database and

generates a synthetic packet streamgenerates a synthetic packet stream

–– Comes with a description of the streamComes with a description of the stream

Core system provides the best matchCore system provides the best match
–– Find modules with all needed information Find modules with all needed information

–– Choose based on storage size and Choose based on storage size and
processing costs of replay()processing costs of replay()

1111

Historical queries (contHistorical queries (cont’’d)d)

Replay() allows significant reduction in Replay() allows significant reduction in
disk reads at the cost of CPU cyclesdisk reads at the cost of CPU cycles
–– Assumption is that CPU is not scarce while Assumption is that CPU is not scarce while

bandwidth from disk to memory isbandwidth from disk to memory is

No explicit knowledge of what the two No explicit knowledge of what the two
modules are actually doing!modules are actually doing!

This method is used today to run on This method is used today to run on
DanteDante’’s s NetFlowNetFlow data. data.
–– No need to modify queries that operate on No need to modify queries that operate on

live packet streamlive packet stream

1212

Hardware offloadHardware offload

OffOff--loading some module loading some module callbackscallbacks to to
hardware. hardware.

Easy for the filter, hard for Easy for the filter, hard for callbackscallbacks

ExamplesExamples
–– load() code sent to active storage systems load() code sent to active storage systems

(e.g., DIAMOND) to search the database (e.g., DIAMOND) to search the database
when no index existswhen no index exists

–– If update() is simple enough it can be If update() is simple enough it can be
compiled to run directly on an compiled to run directly on an IXPIXP’’ss
microenginemicroengine..

1313

RobustnessRobustness
Degrade module performance in presence of Degrade module performance in presence of
traffic anomalies or high query loadtraffic anomalies or high query load
–– Module chosen based on resource usage Module chosen based on resource usage

Gracefully as module resource usage increasesGracefully as module resource usage increases
–– Delay results (modules runs offline)Delay results (modules runs offline)
–– Sample input packet streamSample input packet stream
–– Last resort: stop the module and resume it laterLast resort: stop the module and resume it later

Incentives for users toIncentives for users to
–– Provide efficient implementationsProvide efficient implementations
–– Ask as few resources as possibleAsk as few resources as possible
–– Implement replay() Implement replay() callbackcallback

–– if computation is reusable, it has higher priorityif computation is reusable, it has higher priority

1414

Achieving SafetyAchieving Safety
Module may use disproportionate amount of Module may use disproportionate amount of
resourcesresources
–– Same problem with legit modules and anomalous Same problem with legit modules and anomalous

incoming trafficincoming traffic

Module may corrupt other moduleModule may corrupt other module’’s datas data
–– Removing pointer arithmetic would solve the problem Removing pointer arithmetic would solve the problem

but itbut it’’s not feasibles not feasible
–– Use approach similar to FLAME (based on Cyclone)Use approach similar to FLAME (based on Cyclone)

Module may break usage policy Module may break usage policy
–– e.g., break anonymization schemee.g., break anonymization scheme
–– Local anonymization is easy to do but not good Local anonymization is easy to do but not good

enough for most usersenough for most users
–– Distributed anonymization still an open problem...Distributed anonymization still an open problem...

1515

Achieving ScalabilityAchieving Scalability

Running on cluster of nodesRunning on cluster of nodes
––““similarsimilar”” modules run on same nodemodules run on same node

1616

Making it distributed...Making it distributed...
Demands for global resource managementDemands for global resource management
Online queries: Optimal NetworkOnline queries: Optimal Network--wide Samplingwide Sampling
–– Select the nodes that need to run a specific module to Select the nodes that need to run a specific module to

minimize the total number of packet processedminimize the total number of packet processed
–– ModuleModule’’s utility function that depends on the aggregate s utility function that depends on the aggregate

sampling rate across the network of monitorssampling rate across the network of monitors
–– Optimal algorithm for a class of utility functionsOptimal algorithm for a class of utility functions

Retrospective queries: MIND distributed indexRetrospective queries: MIND distributed index
–– Nodes share and distribute some information on the Nodes share and distribute some information on the

traffic they observetraffic they observe
–– Query first look in the index to find nodes that may Query first look in the index to find nodes that may

contain data of interestcontain data of interest
–– Prototype implemented on Prototype implemented on PlanetLabPlanetLab

1717

ConclusionConclusion

CoMo is a platform for fast prototyping CoMo is a platform for fast prototyping
traffic analysis methodstraffic analysis methods

Implementation publicly availableImplementation publicly available
–– Runs on x86 and Runs on x86 and StrongARMStrongARM; ;

–– Supports many network capture devices Supports many network capture devices
(DAG, (DAG, libpcaplibpcap, Prism2 wireless cards, , Prism2 wireless cards,
NetFlowNetFlow))

–– Full packet capture on Gigabit linksFull packet capture on Gigabit links

–– Four code releases so far...Four code releases so far...

Looking for users and sites where to Looking for users and sites where to
develop new nodesdevelop new nodes

1818

More infoMore info

Source code available atSource code available at
http://http://como.sourceforge.netcomo.sourceforge.net

comocomo--users@lists.sourceforge.netusers@lists.sourceforge.net
for comments, questions, etc.for comments, questions, etc.

	The CoMo project:An overview
	Motivation
	Motivation (cont’d)
	CoMo design goals
	Related work
	CoMo System model
	System model (cont’d)
	System architecture
	Writing query modules
	Historical queries
	Historical queries (cont’d)
	Hardware offload
	Robustness
	Achieving Safety
	Achieving Scalability
	Making it distributed...
	Conclusion
	More info

