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Motivation

* Prototyping new traffic analysis
methods Is hard!

—System performance strongly depends
on traffic patterns

—Long learning phase to fine tune
neuristic parameters

— Difficult to properly dimension system
without prior knowledge of traffic
characteristics
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Motivatien (cont’d)

* Need for an open network
monitoring infrastructure

—Widely deployed, diverse datasets
—Supports multiple independent users

—Provides a way to quickly implement
the analysis methods

—Abstracts away the internals of the
network monitor

intel.



CoMe design goals

o Support multiple arbitrary traffic queries
on the packet stream
e Arbitrary means that gueries:

— perform any computation on the packet
stream

— run on past traffic data as well as real-time
— are coming from different independent users

 Multiple means that queries:

— compete for resources on the entire
Infrastructure

— may be scheduled to run on several systems
at once
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Related work

e Gigascope (AT&I)

— GSQL to describe traffic query and schema. Possible
to automatically offload to hardware some functions.

e FLAME (UPenn)

— Focus on safety and trust of in-kernel modules for
network monitoring

e Aurora, Borealis (MIT, Brown University)

— Handle (distributed) continuous queries on data
streams

— Seven operators and automated load shedding
techniques

e Scriptroute (UW)

— Focus on making active measurement simpler to
specify and run safely on a distributed architecture
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CoMo System model

* Core processes

— Handle all data movement
(wire 2> memory -2 disk)

— Unified interface to packet streams
(abstracting capture devices)

— Schedule gueries and optimize allocation of
computing resources

— Maintain full packet trace for a window of
time (e.g., 72 hours)

— Provide guery interface and handle user
requests to access results
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Systemimodel (cont’d)

* Querles reside In plug-in modules
— Defined by pair <filter:function>
— Filter executed by core processes

— Function to be applied on the packet stream
specified in set of callbacks

— Callbacks used to access query results too

— Callbacks are closures (i.e. all state is defined In
the call) to allow optimization by core processes

— All state Is maintained by core processes

— Allows to stop/pause/resume modules when
processing resources are scarce
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Systemjarchitecture

Modules

Modules

Modules

packets

data

blocks

<4

Synch;:dhous with
packet stream

match();
update();
real-time
computations
on incoming
packet stream

-USGI' query

tuples |

export();
store();
long-term
analysis and
storage to disk

>

load();
print();
retrieve data from
disk (w/filtering
and indexing)
and format response




Writing guery modules

e Success of system depends on how
simple It Is to write modules

— Kismet module (114 semicolons)
— Top-N destinations (62 semicolons)
— Bytes/Packets Counter (53 semicolons)

 EFach module maintains its own database

— Using store(), load(), print() callbacks

— Storage manager deals with indexing data
and providing fast disk access.

— Database schema known only to the module
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Historieal queries

* Re-use computations made by modules
— (only alternative is to go to packet trace)

* Modules provide a replay() callback

— Runs on the module’s database and
generates a synthetic packet stream

— Comes with a description of the stream

 Core system provides the best match
— Find modules with all needed information

— Choose based on storage size and
processing costs of replay()

intel.
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Histerical queries (cont’d)

 Replay() allows significant reduction In
disk reads at the cost of CPU cycles

— Assumption is that CPU iIs not scarce while
bandwidth from disk to memory is

* No explicit knowledge of what the two
modules are actually doing!

* This method iIs used today to run on
Dante’s NetFlow data.

— No need to modify queries that operate on
live packet stream

intel.

11



Hardware offload

* Off-loading some module callbacks to
hardware.

 Easy for the filter, hard for callbacks

 Examples

— load() code sent to active storage systems
(e.g., DIAMOND) to search the database
when no Index exists

— If update() Is simple enough it can be
compiled to run directly on an IXP’s
microengine.

intel.
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Robustness

e Degrade module performance in presence of
traffic anomalies or high query load

— Module chosen based on resource usage

* Gracefully as module resource usage increases
— Delay results (modules runs offline)
— Sample input packet stream
— Last resort: stop the module and resume it later

* Incentives for users to
— Provide efficient implementations
— Ask as few resources as possible

— Implement replay() callback
— If computation is reusable, it has higher priority.
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Achieving Safety

* Module may use disproportionate amount of
resources

— Same problem with legit modules and anomalous
Incoming traffic

* Module may corrupt other module’s data

— Removing pointer arithmetic would solve the problem
but it’s not feasible

— Use approach similar to FLAME (based on Cyclone)
* Module may break usage policy

— e.g., break anonymization scheme

— Local anonymization is easy to do but not good
enough for most users

— Distributed anonymization still an open problem...

intel.
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Achieviimg Scalability

* Running on cluster of nodes
—“similar” modules run on same node

Modules Modules Modules

user query
e

packets
tuples |

Aggregation
Long-term
analysis

Synchronous with Periodic User Request-driven
packet stream




Making@iit distributed...

e Demands for gloebal resource management

* Online queries: Optimal Network-wide Sampling

— Select the nodes that need to run a specific module to
minimize the total number of packet processed

— Module’s utility function that depends on the aggregate
sampling rate across the network of monitors

— Optimal algorithm for a class of utility functions

 Retrospective queries: MIND distributed index

— Nodes share and distribute some information on the
traffic they observe

— Query first look in the index to find nodes that may
contain data of interest

— Prototype implemented on PlanetLab

intel.
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Conclusion

* CoMo Is a platform for fast prototyping
traffic analysis methods

* Implementation publicly available
— Runs on x86 and StrongARM;

— Supports many network capture devices
(DAG, libpcap, Prism2 wireless cards,
NetFlow)

— Full packet capture on Gigabit links
— Four code releases so far...

* Looking for users and sites where to
develop new nodes

Iintgl.
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More o

Source code available at
http://como.sourceforge.net

como-users@lists.sourceforge.net
for comments, guestions, etc.

Iintgl. T
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